一种氮化铝陶瓷及其制备方法和应用

    公开(公告)号:CN119874381A

    公开(公告)日:2025-04-25

    申请号:CN202411949386.0

    申请日:2024-12-27

    Abstract: 本发明涉及陶瓷材料技术领域,具体涉及一种氮化铝陶瓷及其制备方法和应用,该氮化铝陶瓷,包括氮化铝混料和金刚石,氮化铝混料包括氮化铝和氧化钇,其中,氮化铝混料和金刚石的质量比为(12~18):(1.6~4),氧化钇的质量含量为氮化铝混料总质量的1%~5%。本发明提供的氮化铝陶瓷,在特定的含量占比下,利用氧化钇和金刚石同时作为烧结添加剂,一方面利用氧化钇与氧化铝反应生成钇铝酸盐液相,达到促进样品的致密化,净化氮化铝晶格,提高热导率的目的;另一方面利用金刚石改善氧化钇与氧化铝反应生成的二次相问题,同时金刚石自身具有极高的热导率、良好的绝缘性与力学性能,可进一步提升陶瓷制品的整体性能。

    一种TiN/TiSiN梯度多层涂层力学性能和应力分布预测方法

    公开(公告)号:CN119558129A

    公开(公告)日:2025-03-04

    申请号:CN202411633124.3

    申请日:2024-11-15

    Abstract: 本发明涉及一种TiN/TiSiN梯度多层涂层力学性能和应力分布预测方法,具体步骤如下:1)利用有限元软件进行三维实体建模;2)对压头、梯度多层涂层和基体的几何模型分别进行网格划分;3)对几何模型赋予材料属性;4)对几何模型进行装配;5)对模型确定加载方式和边界条件;6)利用有限元软件进行模拟计算,计算梯度涂层的硬度和有效弹性模量;7)预测梯度多层涂层的内部本征应力。本发明采用迭代计算的方法得到TiN层和TiSiN层的塑性参数,使得采用有限元分析方法预测梯度多层涂层的性能数据时所得结果更接近真实。基于该预测方法辅助筛选高性能的TiN/TiSiN梯度多层涂层,具有效率高、成本低的优势。

    一种电子封装用的氮化铝陶瓷及其制备方法

    公开(公告)号:CN118930279A

    公开(公告)日:2024-11-12

    申请号:CN202411218058.3

    申请日:2024-09-02

    Abstract: 本发明提出了一种电子封装用的氮化铝陶瓷及其制备方法,属于电子封装陶瓷材料领域,在氮化铝陶瓷烧结过程中以氮化铝为原料,加入氢化铒及氧化钇作为复合助剂进行烧结,所述氢化铒粉末及氧化钇粉末按照质量百分比均为烧结所需混合物料的总质量1wt%~5wt%,余量为氮化铝粉末。本发明采用稀土氢化物作为烧结助剂,氢化物分解产生的稀土元素单质可以结合氧化铝中的氧元素,产生的稀土氧化物可以继续与氧化铝反应,稀土氢化物有双重除氧作用,避免氧进入氮化铝晶格形成缺陷,可以有效提高热导率;以氢化铒及氧化钇作为复合烧结助剂可以降低生成铝酸盐液相的共晶线,使液相出现在更低的温度,促进样品的致密度。

    一种提高基体与PVD涂层结合力的方法

    公开(公告)号:CN118880229A

    公开(公告)日:2024-11-01

    申请号:CN202411139479.7

    申请日:2024-08-20

    Abstract: 本发明属于涂层制备技术领域,具体涉及一种提高基体与PVD涂层结合力的方法,具体包括,先将基体进行抛光处理,再采用微波等离子体对基体表面进行刻蚀预处理,使得基体表面具备纳微级别的凹槽或凹坑结构,然后在刻蚀预处理后的基体表面沉积PVD涂层,最后获得高结合力的PVD涂层。该方法不仅能够提高基体表面的比表面积,增加涂层与基体之间的接触面积,形成机械锚固作用,而且通过微波等离子体刻蚀预处理的方法可去除基体表面氧化物,提高涂层与基体之间的结合力。该方法适用于工程实践领域,可以延长PVD涂层的使用寿命。

    一种铬基氮化物梯度复合涂层结构及其原位制备方法

    公开(公告)号:CN112458438B

    公开(公告)日:2023-03-31

    申请号:CN202011417101.0

    申请日:2020-12-07

    Abstract: 本发明提供一种铬基氮化物梯度复合涂层结构及其原位制备方法。其结构包括镀在基体表面的铬缓冲层和沉积在铬缓冲层表面的铬基氮化物梯度层。将镀有铬缓冲层的基体置于微波等离子体化学气相沉积设备,通过调节含氮气体量以及微波功率,利用N等离子体团与铬离子的反应快速生成铬基氮化物层。在微波对金属微区表面的趋肤效应、氮化物陶瓷层透射损耗以及金属基体的反射效应的协同作用下,产生热量‑温度梯度,使反应活性由陶瓷‑铬缓冲层的界面前沿向残余铬缓冲层纵深不断衰减,实现化学反应和速率的梯度变化,从而获得结构和成分呈连续梯度分布的铬基氮化物涂层。所得的连续梯度结构能够显著降低层间应力,提高涂层的力学性能,降低涂层摩擦系数。

    一种提高氮化物红色荧光粉发光强度与热稳定性能的方法

    公开(公告)号:CN112680225B

    公开(公告)日:2022-11-25

    申请号:CN202011603155.6

    申请日:2020-12-30

    Abstract: 本发明是一种提高氮化物红色荧光粉发光强度与热稳定性能的方法,其是一种利用六方氮化硼(h‑BN)作为硼源掺杂剂提高氮化物红色荧光粉CaAlSiN3:Eu2+发光强度和热稳定性的方法,即:在EuN,Ca3N2,AlN,Si3N4作为原料粉体的基础上,添加一定比例h‑BN超细粉体在手套箱中进行称量、研磨、装料入石墨模具等步骤,将装有混合原料粉体的石墨模具置于等离子场助烧结装置中,将其在1400~1450℃,腔体压强小于50Pa的条件下进行烧结,控制反应升温速率为180~200℃/分钟和保温时间为3~5分钟,烧结之后取出块体进行研磨,即得到一种具有高发光强度、高热稳定性的Ca0.99(Al1‑xBx)SiN3:0.01Eu2+硼掺杂氮化物红色荧光粉体。本发明工艺简单、可重复性高,所制备的产品较之未掺硼粉体,发光强度提升了30%~40%,热稳定性能明显改善。

    一种高致密纯相CrN陶瓷的制备方法

    公开(公告)号:CN115215663A

    公开(公告)日:2022-10-21

    申请号:CN202210847324.3

    申请日:2022-07-19

    Abstract: 本发明提供一种高致密纯相CrN陶瓷的制备方法,属于陶瓷技术领域。本发明为一种高致密纯相CrN陶瓷的制备方法,包括以下步骤;(1)将CrN粉体置于气氛炉中,在氨气气氛下进行氮化处理,得到高纯CrN粉体原料;(2)将高纯CrN粉体原料装入石墨模具中,进行等离子活化烧结,得到高致密纯相CrN陶瓷,等离子活化烧结过程中升温速率为100~200℃/min,烧结温度为1100~1300℃,保温时长为1~10min,烧结压力为50~100MPa。本发明首先以CrN粉体为原料,利用氨解氮化工艺,进行纯化处理,使粉体中的Cr2N杂相氮化为CrN相,得到物相单一的高纯CrN粉体原料;再利用等离子活化烧结,在1100~1300℃下实现CrN粉体的快速致密化并抑制烧结过程中的相分解,得到物相单一、结构致密的CrN陶瓷。

    一种Y-ZrO2/Al2O3体系复合粉体的制备方法

    公开(公告)号:CN115159963A

    公开(公告)日:2022-10-11

    申请号:CN202210313012.4

    申请日:2022-03-28

    Abstract: 本发明公开了一种Y‑ZrO2/Al2O3体系复合粉体的制备方法,包括以下步骤:1)将铝盐、锆盐以及钇盐溶解于水中配制成溶液A,将碱性沉淀剂NH4HCO3溶于水中,并加入分散剂配制成溶液B;2)在搅拌的条件下,将溶液A逐滴地滴加到溶液B中,在30~44℃温度下进行共沉淀反应,之后室温下静置陈化得到混合悬浮液C;3)将混合悬浮液C进行抽滤、洗涤、真空干燥得到复合粉体的前驱体;4)将复合粉体的前驱体从室温升到900~1300℃煅烧,得到Y‑ZrO2/Al2O3体系复合粉体。该方法具有物相与成分可调控且粉体粒度分布窄,组分混合均匀,生产周期短,工艺过程简单,可量产等技术优势。

    一种微波等离子体化学气相沉积制备的三元氮化物涂层及其方法

    公开(公告)号:CN114686803A

    公开(公告)日:2022-07-01

    申请号:CN202210279445.2

    申请日:2022-03-22

    Abstract: 本发明提供一种微波等离子体化学气相沉积制备的三元氮化物涂层及方法,属于涂层制备技术领域。一种微波等离子体化学气相沉积的三元氮化物涂层,所述三元氮化物涂层的分子形式为M1‑xDxNy。一种微波等离子体化学气相沉积制备三元氮化物涂层的方法,包括以下步骤;(1)基体清洗、预处理;(2)进行第一次微波等离子体化学气相沉积,金属基体表面形成固溶体和或金属间化合物;(3)进行第二次微波等离子体化学气相沉积,开始沉积三元氮化物涂层。本发明中的三元氮化物涂层中均匀分布微量固溶体或金属间化合物,起到弥散强化、增强涂层性能的作用,涂层表现出更优的高温服役特性;本发明中的方法具有更高的沉积效率,能获得较厚的三元氮化物涂层。

Patent Agency Ranking