一种高磁导率软磁复合材料的制备方法

    公开(公告)号:CN109036754B

    公开(公告)日:2020-09-25

    申请号:CN201810820890.9

    申请日:2018-07-24

    Abstract: 本发明属于磁性材料制备领域,尤其涉及一种高磁导率软磁复合材料的制备方法。该方法将软磁合金与绝缘介质混合,通过热压热变形工艺制备软磁复合材料;经热变形获得的磁体中软磁合金变为片状结构,所有片状磁性颗粒皆沿磁环平面(工作磁路方向)平行有序排列;同时在绝缘介质中加入纳米磁性氧化物;最终获得高磁导率各向异性软磁复合材料。本发明的优点是:片状结构可有效降低损耗,提高磁导率,经热压热变形工艺可直接获得沿磁环平面取向的片状软磁颗粒,不需要磁场即可获得各向异性有序磁结构。

    一种低损耗软磁复合材料的制备方法及其磁环

    公开(公告)号:CN110880396A

    公开(公告)日:2020-03-13

    申请号:CN201911189133.7

    申请日:2019-11-28

    Abstract: 本发明公开了一种低损耗软磁复合材料的制备方法,在球形软磁合金颗粒外包覆绝缘层形成混合粉末;将混合粉末装入环形模具压制成为磁环;在磁环成型过程中施加外磁场,所述磁场垂直于磁环平面,与磁环法向相平行;去应力退火而获得软磁复合材料。本发明同时公开了一种低损耗软磁复合材料磁环。该技术方案非常简便,对磁粉、设备都没有严苛要求,即可实现高性能;非磁性相在磁环轴向形成连续分布,增大了磁路方向的电阻和磁阻;细小的磁性颗粒填充了轴向空隙,但磁路方向空隙增大,增加了磁路方向磁阻和电阻;垂直磁场取向的软磁复合材料具有更低的磁损耗;本发明由于采用设备少、工艺步骤少、工艺简单,可以快速实现软磁复合材料的工业应用。

    一种高性能软磁复合材料的制备方法及其磁环

    公开(公告)号:CN110853859A

    公开(公告)日:2020-02-28

    申请号:CN201911188794.8

    申请日:2019-11-28

    Abstract: 本发明公开了一种高性能软磁复合材料的制备方法及其磁环,在球形软磁合金颗粒外包覆绝缘层形成混合粉末;将混合粉末装入模具使混合粉末压制成型;在混合粉末成型过程中施加外磁场,磁场平行于工作磁路平面,垂直于工作磁路平面法向方向;去应力退火而获得软磁复合材料。该技术方案非常简便,对磁粉、设备都没有严苛要求,即可实现高性能;非磁性相的非对称分布:沿外磁场方向呈连续链状分布,降低了水平磁路磁阻和损耗;磁性相的非对称分布:沿外磁场方向排列紧密有序,细小的磁性颗粒择优填充在磁环平面方向的气隙,降低了水平磁路磁阻和损耗;高磁导率和低损耗;本发明采用设备少、工艺步骤少、工艺简单,可以快速实现软磁复合材料的工业应用。

    一种软磁复合材料的界面扩散制备方法

    公开(公告)号:CN108538533B

    公开(公告)日:2020-02-21

    申请号:CN201810595194.2

    申请日:2018-06-11

    Abstract: 本发明涉及一种软磁复合材料的界面扩散制备方法。软磁复合材料以Fe、Fe‑Si、Fe‑Ni、Fe‑Ni‑Mo、Fe‑Si‑Al粉末为原材料;将钝化剂和软磁合金粉末混合,经搅拌、烘干,得到钝化粉;将钝化粉装入成型模具中,压制成磁环;采用B2O3、V2O5、Bi2O3、Na2CO3、Mn2O3、Sb2O3、CuO和低熔点玻璃粉等低熔点化合物将磁环表面包覆,经400~1000℃真空退火1~48h,使低熔点化合物经颗粒界面扩散至磁环内部,提高磁体电阻率,炉冷至室温,获得软磁复合材料。本发明的优点是:无需在磁环压制成型之前加入绝缘介质,避免了压制过程中绝缘介质分布不均;通过真空退火在磁体内部界面处渗透扩散得到的绝缘层非常薄,避免了传统工艺中绝缘层导致磁体磁导率大幅降低的问题。

    一种n-p异质型介孔球状气敏材料的制备方法

    公开(公告)号:CN107328825B

    公开(公告)日:2019-08-06

    申请号:CN201710610672.8

    申请日:2017-07-25

    Abstract: 一种n‑p异质型介孔球状气敏材料的制备方法,它涉及一种n型SnO2负载p型介孔球状金属氧化物NiO气敏材料的制备方法,包括步骤:以有序介孔二氧化硅FDU‑12为模板,利用纳米复制法合成介孔球状NiO前驱体,再利用改性浸渍法在NiO表面负载SnO2,得到n‑p异质型介孔球状SnO2/NiO气敏材料。本发明方法一方面通过介孔结构增加表面积以提高气敏性,另一方面通过调控n‑p异质型界面电子传输以提高气敏材料针对特定气体的灵敏度和选择性。本发明所采用的方法原料来源广泛,价格低廉,而且化学制备手段简单,得到的n‑p异质型介孔气敏材料灵敏度高,选择性强。

    一种二氧化钛光催化复合材料的制备方法

    公开(公告)号:CN108816212A

    公开(公告)日:2018-11-16

    申请号:CN201810748127.X

    申请日:2018-07-10

    Abstract: 本发明涉及一种多孔可循环利用亚铁磁性铁氧体/二氧化钛(TiO2)光催化复合材料的制备方法,该材料是以活性炭的模板剂与造孔剂,经改性、磁介质填充、二氧化钛负载以及除模板等工艺制得,具有光催化效率高与磁分离效率好等优点。步骤包括:一、活性炭的硝酸回流改性;二、采用溶剂热法对改性活性炭进行铁氧体磁介质的适量填充,得到具有磁响应的铁氧体/活性炭复合材料;三、采用浸渍法以钛酸丁酯为前驱体二次负载TiO2纳米颗粒,得到TiO2/铁氧体/活性炭复合材料;四、将TiO2/铁氧体/活性炭复合材料在空气中煅烧,得到多孔易磁分离可循环利用铁氧体/二氧化钛光催化复合材料。二氧化钛光催化复合材料具有以下优势:制备工艺简单、可循环利用、催化效率。

    一种高效降解抗生素可见光催化复合材料的制备方法

    公开(公告)号:CN108772095A

    公开(公告)日:2018-11-09

    申请号:CN201810769632.2

    申请日:2018-07-13

    Abstract: 本发明涉及一种高效可磁分离g-C3N4/ZnO/ZnFe2O4可见光催化降解抗生素复合材料的制备方法,该材料是以ZnFe2O4为基体材料和磁分离介质,经ZnO颗粒负载及g-C3N4包覆等工艺制得,ZnO作为g-C3N4和ZnFe2O4光生电子的接收端,提高了光生电子空穴的分离,复合材料具有可见光催化降解抗生素、可磁分离再利用等特点。步骤包括:一、ZnFe2O4基体材料的合成;二、在确保磁响应的基础上负载ZnO颗粒,得到ZnO/ZnFe2O4复合材料;三、二维结构g-C3N4材料的合成;四、将g-C3N4与ZnO/ZnFe2O4进行有效复合,得到高效可磁分离g-C3N4/ZnO/ZnFe2O4可见光催化降解抗生素复合材料。g-C3N4/ZnO/ZnFe2O4光催化复合材料具有以下优势:可见光降解、可磁分离再利用、抗生素降解效率高。

    一种软磁复合材料及其制备方法

    公开(公告)号:CN105895291B

    公开(公告)日:2017-12-08

    申请号:CN201610469982.8

    申请日:2016-06-26

    Abstract: 本发明涉及一种复合结构的软磁复合材料,复合软磁材料由片状磁性颗粒构成,片状磁性颗粒由α‑Fe和γ´‑Fe4N的核壳结构组成,γ´‑Fe4N相在外包覆内部的α‑Fe相,这种结构提高颗粒的电阻率和耐腐蚀性,而片状结构最大幅度的降低了高频下的涡流损耗。该发明采用球磨的方法,获得扁平化效果良好的片状铁粉;然后将扁平化铁粉于H2和NH3混合气氛进行氮化处理;将氮化后的铁粉制成软磁复合磁环;最后进行退火热处理。该方法通过将铁粉扁平化,有效增大了单位体积铁粉的表面积,利于渗氮;同时球磨后的铁粉,内应力较大,缺陷也较多,也有利于氮的渗透;表面γ´‑Fe4N、内部α‑Fe的复合结构,有利于软磁材料电阻率的提高。

Patent Agency Ranking