-
公开(公告)号:CN113343596B
公开(公告)日:2022-07-08
申请号:CN202110569493.0
申请日:2021-05-25
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种基于Lauder‑Sharma k‑epsilon模型的可压缩修正方法,属于计算流体力学雷诺平均湍流数值模拟领域。本发明方法基于可压缩流动特征,构造一种可压缩修正,抑制了分离区内过高的湍流粘性系数,降低分离区和再附后的湍流粘性系数,从而有效降低原始Lauder‑Sharma k‑epsilon模型预测的壁面热流,同时保持了原始模型在分离区之前特性和模型的鲁棒性。
-
公开(公告)号:CN114330080A
公开(公告)日:2022-04-12
申请号:CN202210207936.6
申请日:2022-03-04
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/23 , G06F30/28 , G06T17/20 , G06F113/08 , G06F119/08 , G06F119/14 , G06F111/10
Abstract: 本发明公开了一种飞行器面对称跨流域流场的预测方法,涉及跨流域流场模拟领域,包括:基于飞行器对应的第一物理空间网格和来流条件进行流场求解得到流场的速度和温度信息;生成三维速度空间网格,基于外边界对三维速度空间网格的网格范围进行设置获得三维半球形区域,获得半球形加密区域和球形加密区域,基于网格间距分布信息、半球形加密区域和球形加密区域生成半球形的速度空间网格,将半球形的速度空间网格对称复制得到球形的速度空间网格;基于第一物理空间网格和球形的三维速度空间网格进行迭代求解得到飞行器的三维物理空间流场;本发明实现飞行器面对称跨流域流场的快速预测。
-
公开(公告)号:CN113515903A
公开(公告)日:2021-10-19
申请号:CN202111049359.4
申请日:2021-09-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/23 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种分区封装的快速寻点方法、存储介质及终端,属于计算流体力学及网格技术领域,方法包括:建立结构网格系统中各网格块的包围盒,并将包围盒划分为多个子空间;获取各包围盒中各子空间中网格点属性信息并封装存储;确定给定网格点对应的包围盒的子空间;计算给定网格点与其所属子空间中所有网格点之间的距离,通过比较距离大小进而确定给定网格点的最近网格点。本发明在获取各包围盒中各子空间中网格点属性信息并封装存储后,仅需计算给定网格点与其所属子空间中所有网格点之间的距离,通过比较距离大小进而确定给定网格点的最近网格点,计算量小即可大大节约计算时间开销,提高了计算效率。
-
公开(公告)号:CN112052512A
公开(公告)日:2020-12-08
申请号:CN202010715245.8
申请日:2020-07-23
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明提出一种湍流边界层分层判据的方法,包括:依据流场变量计算无量纲粘性系数 依据无量纲粘性系数的取值范围对湍流边界层进行分层。本发明给出的无量纲粘性系数与当地的湍流脉动特征直接相关,能够完全体现湍流边界层内的湍流脉动特征,分层标准确定严格,实施过程不依赖于使用者的经验,能够有效提高湍流边界层的模拟精度,可直接应用于存在压力梯度的流动中,能够有效克服现有技术的湍流边界层分层判据不适用于存在流向压力梯度的流动问题。
-
公开(公告)号:CN107444669B
公开(公告)日:2019-11-12
申请号:CN201710638514.3
申请日:2017-07-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: B64F5/00
Abstract: 本发明公开了一种下反式高超声速飞行器气动布局设计方法,包括如下步骤:给定约束条件:长度L,宽度W,底部截面装填内径φ,头部半径Rh,头部球面切角θ,翼前缘半径Rw;步骤一、确定飞行器的上下表面轮廓线;步骤二、确定飞行器的左右宽度轮廓线;步骤三、确定下反截面曲线;步骤四、生成B点之前的椭圆截面;步骤五、生成B点到C点之间的组合截面,得到飞行器外形。本发明方法可以实现不同下反角和尺寸约束条件下外形的快速生成,并且该方法生成的外形可以完全参数化,下反式背风面既保证了升力面积足够大,同时又抑制了迎风面高压气流的向上溢出,减少了升力损失,能够提升气动效率,可以为新型高超声速飞行器设计提供一种新的可选布局方法和方案。
-
公开(公告)号:CN119026523A
公开(公告)日:2024-11-26
申请号:CN202411497810.2
申请日:2024-10-25
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了适用于多量阶非线性加权方法的光滑因子量阶调节方法,涉及高阶格式非线性加权领域,包括:基于精度K选取非等距模板集;分别计算获得非等距模板集中的3个子模板的光滑因子;确定最长子模板上的光滑因子量阶调节器;根据光滑因子量阶调节器和光滑因子,计算得到修正后的最长子模板上光滑因子;确定最短子模板上的光滑因子量阶调节器;根据光滑因子量阶调节器和光滑因子,计算得到修正后的最短子模板上光滑因子;获得3个子模板最终的光滑因子;本发明能够确保非线性加权高阶格式精度,且修正光滑因子计算的非线性权与控制方程的量纲无关。
-
公开(公告)号:CN117408189B
公开(公告)日:2024-03-12
申请号:CN202311719536.4
申请日:2023-12-14
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F113/08 , G06F119/14 , G06F111/10 , G06F119/08
Abstract: 本申请公开了一种高超声速边界层的转捩预测方法、装置、设备及存储介质,所属的技术领域为转捩预测技术。所述高超声速边界层的转捩预测方法,包括:根据飞行器的模型外形绘制计算网格,并利用三维纳维‑斯托克斯方程在计算网格内进行流动计算,得到基本流场;在基本流场内选取目标站位,并在目标站位生成沿法向的比值变化剖面曲线;获取最大雷诺数比值关于马赫数、壁面温度和来流温度的代数关系式;根据代数关系式确定动量厚度雷诺数计算公式;利用动量厚度雷诺数计算公式确定飞行器所在的高超声速边界层的当前动量厚度雷诺数,根据当前动量厚度雷诺数预测飞行器的转捩位置。本申请能够提高对高超声速边界层的转捩预测精度。
-
公开(公告)号:CN115576342B
公开(公告)日:2023-03-24
申请号:CN202211576812.1
申请日:2022-12-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G05D1/08
Abstract: 本申请公开了一种飞行器轨道控制方法、装置、设备及介质,涉及飞行器高空轨道控制领域,包括:基于若干来流参数和喷流参数构建喷口位置的第一平衡态分布函数;基于第一平衡态分布函数及第三平衡态分布函数迭代模拟得到第一空间流场分布;基于第二平衡态分布函数及第一空间流场分布迭代模拟获得发动机开启时第一气动力和第一力矩;根据第一气动力、第一力矩和发动机关闭时第二气动力和第二力矩计算若干来流参数分别的喷流干扰力矩和气动力放大因子,将喷流干扰力矩和气动力放大因子存储至控制设备,以便控制设备根据基于喷流干扰力矩和气动力放大因子确定出的目标力矩和目标气动力使飞行器沿目标轨道运行。能够提高轨道控制发动机的控制精度。
-
公开(公告)号:CN112446067B
公开(公告)日:2022-12-02
申请号:CN202011208007.4
申请日:2020-11-03
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/10
Abstract: 本发明提供了一种基于弹性变形的区域网格动态重构方法,包括以下步骤:步骤1、计算变形前内边界到外边界之间的距离;步骤2、计算变形前空间网格点到物面的距离;步骤3、计算空间网格点的分布情况;步骤4、物面网格点更新;步骤5、基于弹性形变完成区域空间网格点动态重构。本发明提出的重构方案只涉及代数运算,网格重构限定于具体区域,计算量小,网格更新效率高;基于弹性拉伸思想,网格点分布与初始网格成比例拉伸或缩短,确保了动态重构后的网格质量;模块化好,实现方便,可适用于机翼变形、控制舵偏转等航空航天领域的数值仿真需求。
-
公开(公告)号:CN114580221A
公开(公告)日:2022-06-03
申请号:CN202210492056.8
申请日:2022-05-07
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/18 , G06Q10/04 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种跨流域缝隙流量快速计算方法,涉及缝隙流量计算领域,包括:获得建立缝隙流量预测模型所需的缝隙宽度以及若干个计算状态组成的计算状态组合;基于缝隙宽度和稀薄参数生成物理空间网格;从所述计算状态组合中选取一个计算状态,基于所述物理空间网格进行计算获得通过缝隙的第一缝隙流量值;重复执行上述步骤直至所有计算状态均完成计算,获得所有计算状态对应的缝隙流量值计算结果;基于缝隙流量值计算结果构建缝隙流量预测模型;基于缝隙流量预测模型进行缝隙流量预测;本方法计算量小,且能够满足缝隙流量快速计算的需求。
-
-
-
-
-
-
-
-
-