-
公开(公告)号:CN113231898B
公开(公告)日:2022-12-27
申请号:CN202110463416.7
申请日:2021-04-23
Applicant: 西北工业大学
Abstract: 本发明公开了一种难加工SiCf/SiC陶瓷基复合材料超声振动辅助加工方法,首先将难加工SiCf/SiC陶瓷基复合材料切割成样件,并装夹在三坐标轴数控铣床上;然后将超声振动设备与三坐标轴数控铣床连接并设定初始超声振动参数;再采用自行设计PDC刀具对样件进行超声振动辅助切削加工、顺铣加工和铣磨加工;最后使用刀具扫描仪测量PDC层端面刀齿磨损量,当PDC层端面锥形刀齿完全磨损,判定PDC刀具磨损失效,不再使用该刀具进行加工,并记录PDC刀具去除材料体积。本发明方法达到了减小刀具磨损、提高刀具寿命的目的,并大大降低了成本。
-
公开(公告)号:CN114740005A
公开(公告)日:2022-07-12
申请号:CN202111587148.6
申请日:2021-12-23
Applicant: 西北工业大学 , 中国航发动力股份有限公司
IPC: G01N21/88 , G01N23/2251 , G01B11/30
Abstract: 本发明一种SiCf/SiC陶瓷基复合材料加工表面质量定量评价方法,属于检测技术领域;首先,对于SiCf/SiC陶瓷基复合材料加工表面,采用光学扫描仪器进行表面粗糙度测量,避免由于孔隙和凹坑等缺陷导致接触式粗糙度测量仪测量时卡住。其次,将三维表面粗糙度Sa作为SiCf/SiC陶瓷基复合材料加工表面质量特征参数,并提出在进行Sa测量时应该使测量区域内包含多根纤维束和基体,以保证测量结果的有效性。最后提出了加工表面整体损伤因子δ,将其作为对SiCf/SiC陶瓷基复合材料加工表面进行质量评价的第二个定量评价参数。本发明可以提高研究中评价的全面性和准确性,并为SiCf/SiC陶瓷基复合材料加工表面质量的准确评价提供了有益的指导。
-
公开(公告)号:CN114322857A
公开(公告)日:2022-04-12
申请号:CN202111587149.0
申请日:2021-12-23
Applicant: 西北工业大学
IPC: G01B11/30
Abstract: 本发明一种纤维增强陶瓷基复合材料加工表面粗糙度评价方法,属于检测技术领域;首先,将三维特征参数作为SiCf/SiC陶瓷基复合材料和Cf/SiC陶瓷基复合材料加工表面粗糙度的评价参数,并采用光学扫描仪器对三维表面粗糙度Sa进行测量,避免由于孔隙、凹坑等表面缺陷导致评价结果不准确的问题。然后,研究不同测量区域大小对SiCf/SiC陶瓷基复合材料和Cf/SiC陶瓷基复合材料加工表面三维表面粗糙度Sa的影响规律,从而确定三维表面粗糙度Sa的最小测量区域大小。最后,根据最小Sa测量区域,测量并确定该加工平面的粗糙度。在对SiCf/SiC陶瓷基复合材料和Cf/SiC陶瓷基复合材料加工表面粗糙度进行测量评价前,采用该方法进行Sa最小测量区域的选择工作,可以保证测量数据的有效性,并提高评价结果的准确性。
-
-
公开(公告)号:CN113386050A
公开(公告)日:2021-09-14
申请号:CN202110741820.6
申请日:2021-07-01
Applicant: 西北工业大学
IPC: B24B47/20 , B24B49/00 , B24B53/095
Abstract: 本发明提供了一种难加工镍基高温合金IC10的缓进给磨削方法,解决传统平面磨削镍基高温合金IC10的表面粗糙度较大,表面缺陷多的问题。本发明首先使用粒度稍大的棕刚玉与白刚玉混合砂轮进行粗磨,然后使用粒度较小的棕刚玉与白刚玉混合砂轮进行精磨,实现了镍基高温合金IC10的高效、高精度磨削。
-
公开(公告)号:CN106079433B
公开(公告)日:2018-04-17
申请号:CN201610377438.0
申请日:2016-05-31
Applicant: 西北工业大学
IPC: B29C64/118 , B29C64/20 , B33Y10/00 , B33Y40/00 , B29L31/08
Abstract: 本发明公开了一种涡轮叶片陶芯软芯撑3D打印方法,用于解决现有方法制备涡轮叶片陶芯软芯撑精度差的技术问题。技术方案是在陶芯叶身距叶尖部位1/3处叶型中心位置确定一个软芯撑点,在陶芯叶身距叶尖部位2/3处叶型曲线上均匀布置两个软芯撑点,以软芯撑位置点为中心,Y轴方向为轴线,做直径Φ4mm的圆柱,利用陶芯曲面及蜡型模具曲面为边界裁剪圆柱,两曲面间几何形体即为软芯撑几何模型;采用3D打印方法,实现蜡质软芯撑的制备。由于采用数控定位及加工方法,提高了芯撑与蜡模、陶芯型面的贴合程度,测试表明,直径Φ4mm的蜡质软芯撑,采用本方法可将芯撑和蜡模、陶芯的贴合间隙由最大2mm降低到0.5mm以下。
-
公开(公告)号:CN106181587B
公开(公告)日:2018-02-09
申请号:CN201610531609.0
申请日:2016-07-06
Applicant: 西北工业大学
Abstract: 本发明公开了一种原位自生型TiB2颗粒增强铝基复合材料磨削加工方法,用于解决现有原位自生型TiB2颗粒增强铝基复合材料无磨削加工方法的技术问题。技术方案是该方法采用不同粒度的单晶刚玉砂轮进行粗/精加工,以及合理的选用磨削参数和冷却液,实现了TiB2/Al复合材料的高精度磨削加工,采用本发明的加工方法,磨削工件表面粗糙度可达Ra0.2μm,尺寸精度和形状精度完全符合图纸要求,磨削表面没有烧伤和明显划痕,同时TiB2/Al复合材料以延性去除方式去除,表面未见增强颗粒拔出造成的孔洞缺陷。
-
公开(公告)号:CN106002112B
公开(公告)日:2017-11-28
申请号:CN201610374616.4
申请日:2016-05-31
Applicant: 西北工业大学
IPC: B23P15/02
Abstract: 本发明公开了一种涡轮叶片陶芯软芯撑加工方法,用于解决现有方法软芯撑与陶芯贴合点一致性差的技术问题。技术方案是该方法在陶芯叶身距叶尖部位1/3处叶型中心位置确定一个软芯撑点,在陶芯叶身距叶尖部位2/3处叶型曲线上均匀布置两个软芯撑点,以软芯撑位置点为中心,Y轴方向为轴线,做直径Φ4mm的圆柱,利用陶芯曲面及蜡型模具曲面为边界裁剪圆柱,两曲面间几何形体即为软芯撑几何模型;依据软芯撑几何结构编制的加工程序,采用VMC‑850机床,硬质合金球头铣刀进行加工,实现蜡质软芯撑的加工制备。提高了软芯撑与陶芯贴合点的一致性。
-
公开(公告)号:CN105834702B
公开(公告)日:2017-11-07
申请号:CN201610374646.5
申请日:2016-05-31
Applicant: 西北工业大学
IPC: B23P15/02
Abstract: 本发明公开了一种原位自生型TiB2颗粒增强铝基复合材料叶片切削加工方法,用于解决现有复合材料叶片切削加工方法的技术问题。技术方案是首先采用单面铣削的方式完成叶片型面粗铣加工,完成粗铣加工后采用时效处理工艺平衡切削残余应力;然后,将叶片固定于专用夹具上,采用螺旋铣削方式交替完成叶盆、叶背型面上各区域的半精铣加工,并采用时效处理工艺消除叶片残余应力;最后,重新将叶片固定于夹具上,同样采用螺旋铣削方式交替完成叶盆、叶背型面上各区域的精铣加工。由于采用螺旋铣削方式完成叶背、叶盆型面的半精加工和精加工,有效抑制了加工过程中的扭曲变形,提高了复合材料叶片的加工精度。
-
公开(公告)号:CN106079433A
公开(公告)日:2016-11-09
申请号:CN201610377438.0
申请日:2016-05-31
Applicant: 西北工业大学
Abstract: 本发明公开了一种涡轮叶片陶芯软芯撑3D打印方法,用于解决现有方法制备涡轮叶片陶芯软芯撑精度差的技术问题。技术方案是在陶芯叶身距叶尖部位1/3处叶型中心位置确定一个软芯撑点,在陶芯叶身距叶尖部位2/3处叶型曲线上均匀布置两个软芯撑点,以软芯撑位置点为中心,Y轴方向为轴线,做直径Φ4mm的圆柱,利用陶芯曲面及蜡型模具曲面为边界裁剪圆柱,两曲面间几何形体即为软芯撑几何模型;采用3D打印方法,实现蜡质软芯撑的制备。由于采用数控定位及加工方法,提高了芯撑与蜡模、陶芯型面的贴合程度,测试表明,直径Φ4mm的蜡质软芯撑,采用本方法可将芯撑和蜡模、陶芯的贴合间隙由最大2mm降低到0.5mm以下。
-
-
-
-
-
-
-
-
-