一种基于有监督多视角离散化的多媒体二值编码方法

    公开(公告)号:CN108510559B

    公开(公告)日:2022-03-08

    申请号:CN201810288688.6

    申请日:2018-03-30

    Abstract: 本发明涉及一种基于有监督多视角离散化的多媒体二值编码方法。该方法包括:S1.假设一个由n幅图像组成训练集,通过学习得到包含一系列子函数的哈希函数,将样本的两种不同模态的特征映射到经过优化的特征空间中,得到的一系列与哈希子函数对应的哈希值,然后通过二值量化将哈希值转化为二值化哈希码:S2.基于有监督训练的哈希函数:定义一个线性多分类模型并对模型函数进行优化,采用最小平方损失作为目标函数;S3.基于最小量化损失的哈希函数:假设一种模态的特征,通过哈希函数优化至量化损失最小;S4.基于多视角锚图的哈希函数:构造锚图,并采用锚图正则化哈希函数;S5.优化算法。本发明既可以保持数据在原始空间相似性,又能提高检索的准确率。

    一种图像数据安全检测方法、系统和存储介质

    公开(公告)号:CN113742775A

    公开(公告)日:2021-12-03

    申请号:CN202111049937.4

    申请日:2021-09-08

    Abstract: 本发明提供一种图像数据安全检测方法、系统及介质,其中机器学习分类模型在训练前,利用预设恶意扩充方法扩充数据持有端的原始训练集,得到第一扩充集和第二扩充集,其中第一扩充集记录有原始训练集的样本图像,第二扩充集存储有原始训练集各类别标签的标签编码,并同时利用原始训练集、第一扩充集和第二扩充集进行训练;模型提供端则可在本地利用相同扩充方法还原第一扩充集和第二扩充集,并将第二扩充集输入至训练后的分类模型,还原出原始训练集中各类别标签与标签编码的对应关系,进而便可利用第一扩充集及该对应关系对原始训练集进行还原及泄露检测,避免数据窃取攻击在标签编码未知时难以检测的问题,增强了安全人员对数据泄露的检测能力。

    一种基于自监督的跨模态深度哈希检索方法

    公开(公告)号:CN110309331B

    公开(公告)日:2021-07-27

    申请号:CN201910599265.0

    申请日:2019-07-04

    Abstract: 本发明专利涉及一种基于自监督的跨模态联合哈希检索方法,该方法包括以下步骤:步骤1:针对图像模态数据进行处理:采用深度卷积神经网络对图像模态的数据进行特征提取,对图片数据进行哈希学习,将深度卷积神经网络的最后一层全连接层的节点个数设置为哈希码的长度;步骤2:针对文本模态数据进行处理:使用词袋模型对文本数据进行建模,建立一个两层的全连接神经网络对文本模态的数据进行特征提取,神经网络的输入是使用词袋模型表示的词向量,第一个全连接层节点的数据与第二个全连接层节点的数据与哈希码的长度相同;步骤3:针对类别标签处理的神经网络:采用自监督的训练方式从标签数据中提取语义特征;步骤4:最小化图像与文本网络所提取的特征与标签网络的语义特征间的距离,使得图像与文本网络的哈希模型能够更充分学习不同模态间的语义特征。

    基于深度信息的相关滤波跟踪方法及装置

    公开(公告)号:CN107784663B

    公开(公告)日:2020-10-20

    申请号:CN201711124878.6

    申请日:2017-11-14

    Abstract: 本发明公开了一种基于深度信息的相关滤波跟踪方法及装置,其方法包括:基于深度图的图像分割技术,自适应性量化深度信息,得到深度图像分割结果;利用深度图像分割结果,根据不同场景构建相应的三维空间模型的分层结构;利用分层结构,并结合核相关滤波跟踪算法处理目标尺度变化及检测遮挡。本发明一方面过滤前景和背景信息减少跟踪的干扰因素,结合成熟的图像特征提取技术;另一方面这样的分层结构简化了深度信息的使用方法,使得处理目标尺度变化以及检测遮挡更为容易。结合核相关滤波跟踪算法实现了使用二维表观模型在空间结构下的跟踪方法,能够有效应对遮挡和处理目标尺度变化,提高视觉跟踪效果。

    基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质

    公开(公告)号:CN108447080A

    公开(公告)日:2018-08-24

    申请号:CN201810175534.6

    申请日:2018-03-02

    Abstract: 本发明公开了一种基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质,其方法包括:获取跟踪目标的当前视频帧的检测响应以及当前视频帧之前的所有视频帧的跟踪片段;为每一条跟踪片段计算其置信度,其中,跟踪片段置信度是指当前已经完成部分连接的跟踪片段的可信赖程度;根据置信度的大小,将所有的跟踪片段分为高可靠度跟踪片段和低可靠度跟踪片段两部分,并以当前视频帧的检测响应为关联对象,为高可靠度跟踪片段进行局部数据关联处理,为低可靠度跟踪片段进行全局数据关联处理。本发明可以有效降低关联算法的时间复杂度,能够有效缓解在跟踪的过程中出现的局部遮挡问题,同时可以实现算法的鲁棒性和实时性的均衡。

    面向联邦学习数据投毒攻击的防御方法及装置

    公开(公告)号:CN113965359B

    公开(公告)日:2023-08-04

    申请号:CN202111152694.7

    申请日:2021-09-29

    Abstract: 本发明公开了一种面向联邦学习数据投毒攻击的防御方法及装置,方法包括:每个客户端使用本地数据训练模型参数;每个客户端将本地模型参数上传给服务器,服务器接收到所有的模型参数;服务器从中计算出一个用于比较的参考基准u,则对于任意的两个局部模型wa和wb,计算它们相对于参考基准u的相似度;采用内部投票的方法判断一个局部模型是否为恶意;根据每个局部模型所得的票数,计算每个局部模型的可信度;基于可信度的模型加权聚合,得到最终的全局模型,基于最终的全局模型实现数据投毒攻击的防御。本发明中,恶意客户端的模型会被赋予较低权重,在加权聚合时削弱它对全局模型的影响,从而实现针对数据投毒攻击的防御。

    一种基于本地差分隐私的以用户为中心的推荐方法及系统

    公开(公告)号:CN116383488A

    公开(公告)日:2023-07-04

    申请号:CN202310260656.6

    申请日:2023-03-10

    Abstract: 本发明公开了一种基于本地差分隐私的以用户为中心的推荐方法及系统,所述方法包括:云服务器生成项目矩阵,并将所述项目矩阵发送给客户端;所述客户端根据本地评分数据集生成用户矩阵和用户平均评级向量,然后获取第一梯度、第二梯度和第三梯度并对所述第二梯度进行差分隐私处理,得到目标梯度;所述云服务器根据所述目标梯度更新所述项目矩阵;所述客户端获取更新后的所述项目矩阵并重新执行获取第一梯度、第二梯度和第三梯度的步骤,直至满足目标收敛条件。本发明提出的基于本地差分隐私的以用户为中心的推荐方法,通过将用户平均评分数据引入矩阵分解模型中,使得评分预测更加准确,实现了以用户为中心的推荐方法。

    基于秘密共享的多用户分布式隐私保护回归方法及装置

    公开(公告)号:CN115632761A

    公开(公告)日:2023-01-20

    申请号:CN202211038350.8

    申请日:2022-08-29

    Abstract: 本发明公开了一种基于秘密共享的多用户分布式隐私保护回归方法及装置,方法包括下述步骤:数据提供方C1,C2,...,Cn分别将各自的隐私数据(x1,y1),(x2,y2),...,(xn,yn)通过加性算术秘密共享分发给第一服务器S0和第二服务器S1,得到数据特征的秘密份额和数据标签的秘密份额;第一服务器S0和第二服务器S1基于获得的数据特征的秘密份额和数据标签的秘密份额进行安全两方计算;第一服务器S0和第二服务器S1分别将各自的模型参数的秘密份额 0和 1发送给数据使用方,然后数据使用方在本地重构出完整的模型参数w= 0+ 1。本发明在保证较高安全性的同时,以较低通信代价和较少交互次数完成模型训练任务。

    基于仿真技术的以太坊网络探测方法、装置、设备及介质

    公开(公告)号:CN115208767A

    公开(公告)日:2022-10-18

    申请号:CN202210512262.0

    申请日:2022-05-12

    Abstract: 本发明公开了一种基于仿真技术的以太坊网络探测方法、装置、计算机设备和存储介质,所述方法包括:采集数据,所述数据包括节点间相识关系和节点元数据;创建启动节点后,通过利用节点发现协议的特点,对对等节点进行反复查询并聚合去重,节点数据库得到此前未被分析的节点相识关系;根据所述节点间相识关系和节点元数据,对以太坊网络中节点的行为进行分析。本发明通过利用节点发现协议的特点,对对等节点进行反复查询并聚合去重,节点数据库得到此前未被分析的节点相识关系,进而根据节点相识关系和节点元数据对以太坊网络中节点的行为进行分析,发现的活跃节点数量比现有其他方法都多,表明本方法可以更加完整的展现以太坊网络性质。

Patent Agency Ranking