-
公开(公告)号:CN111291890B
公开(公告)日:2021-01-01
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN111260040A
公开(公告)日:2020-06-09
申请号:CN202010370070.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于内在奖励的视频游戏决策方法,包括以下步骤:S1、获取视频游戏模拟环境;S2、构建神经网络模型;S3、设计内在奖励模型;S4、将内在奖励模型与构建的神经网络模型结构结合;S5、通过模拟环境获取游戏的记录;S6、通过获取的游戏记录,更新神经网络模型;S7、循环训练神经网络模型直至收敛。本发明的有益效果是:较好的解决了三维场景中较为常见的缺乏环境反馈奖励值的问题。
-
公开(公告)号:CN111260040B
公开(公告)日:2020-11-06
申请号:CN202010370070.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于内在奖励的视频游戏决策方法,包括以下步骤:S1、获取视频游戏模拟环境;S2、构建神经网络模型;S3、设计内在奖励模型;S4、将内在奖励模型与构建的神经网络模型结构结合;S5、通过模拟环境获取游戏的记录;S6、通过获取的游戏记录,更新神经网络模型;S7、循环训练神经网络模型直至收敛。本发明的有益效果是:较好的解决了三维场景中较为常见的缺乏环境反馈奖励值的问题。
-
公开(公告)号:CN111291890A
公开(公告)日:2020-06-16
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN111260039B
公开(公告)日:2020-08-07
申请号:CN202010369831.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于辅助任务学习的视频游戏决策方法,包括以下步骤:S1、构建神经网格模型;S2、启动多进程视频游戏环境;S3、判断是否运行了指定轮次,如果否,则进入步骤S4,如果是,则进入步骤S6;S4、获取游戏经验,更新经验池;S5、将经验输入到神经网格模型,更新神经网格模型参数,返回步骤S3;S6、保存神经网格模型;S7、在视频游戏里利用神经网格模型决策;S8、结束。本发明的有益效果是:可以更准确地估计三维场景中的状态价值以及引起状态改变的智能体动作。
-
公开(公告)号:CN111260039A
公开(公告)日:2020-06-09
申请号:CN202010369831.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于辅助任务学习的视频游戏决策方法,包括以下步骤:S1、构建神经网格模型;S2、启动多进程视频游戏环境;S3、判断是否运行了指定轮次,如果否,则进入步骤S4,如果是,则进入步骤S6;S4、获取游戏经验,更新经验池;S5、将经验输入到神经网格模型,更新神经网格模型参数,返回步骤S3;S6、保存神经网格模型;S7、在视频游戏里利用神经网格模型决策;S8、结束。本发明的有益效果是:可以更准确地估计三维场景中的状态价值以及引起状态改变的智能体动作。
-
公开(公告)号:CN110404265A
公开(公告)日:2019-11-05
申请号:CN201910676451.X
申请日:2019-07-25
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种基于博弈残局在线解算的多人非完备信息机器博弈方法、装置、系统及存储介质,该多人非完备信息机器博弈方法包括:步骤1:首先根据卡牌抽象算法进行实时的卡牌抽象;步骤2:如果S不是智能体采取动作的博弈局面,则需要更新各个玩家的策略σ;步骤3:等待当前博弈局面需要采取动作的玩家采取某一动作后,游戏往下进行,如果S是轮到智能体采取动作的博弈局面则同样先更新玩家手牌分布,建立子博弈树后计算当前博弈局面的策略σ,然后智能体根据σ采取一个动作a后游戏继续向下进行。本发明的有益效果是:本发明相比之前的算法灵活性适用性更强,适用于现实世界的博弈场景,可以根据针对不同的现实博弈局面计算相应的策略。
-
公开(公告)号:CN110399920A
公开(公告)日:2019-11-01
申请号:CN201910676439.9
申请日:2019-07-25
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种基于深度强化学习的非完备信息博弈方法、装置、系统及存储介质,该方法包括:探索利用机制改进策略梯度算法的步骤、深度强化学习网络中加入记忆单元的步骤、自我驱动机制对奖励值进行优化的步骤。本发明的有益效果是:本发明通过基线函数解决策略梯度算法经常出现的高方差问题,对于强化学习采样和优化过程时间复杂度高的问题,采取并行机制提高模型求解效率,通过自驱动机制,在弥补环境奖励值稀疏的同时,帮助智能体更有效地对环境进行探索。
-
公开(公告)号:CN110399920B
公开(公告)日:2021-07-27
申请号:CN201910676439.9
申请日:2019-07-25
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种基于深度强化学习的非完备信息博弈方法、装置、系统及存储介质,该方法包括:探索利用机制改进策略梯度算法的步骤、深度强化学习网络中加入记忆单元的步骤、自我驱动机制对奖励值进行优化的步骤。本发明的有益效果是:本发明通过基线函数解决策略梯度算法经常出现的高方差问题,对于强化学习采样和优化过程时间复杂度高的问题,采取并行机制提高模型求解效率,通过自驱动机制,在弥补环境奖励值稀疏的同时,帮助智能体更有效地对环境进行探索。
-
公开(公告)号:CN110795982A
公开(公告)日:2020-02-14
申请号:CN201910599803.6
申请日:2019-07-04
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明专利涉及一种结合人体姿态信息估计视线方法,设计了一个包含显著目标检测分支、头部姿态估计分支和人体姿态估计分支的深度卷积神经网络估计视线方向。三个分支的特征图最后通过点乘给出注视点位置的预测,注视点位置与头部中心位置的连线作为视线方向。通过该结合人体姿态的视线估算方法能够提高视线估计算法的准确度和鲁棒性。
-
-
-
-
-
-
-
-
-