一种基于博弈残局在线解算的多人非完备信息机器博弈方法、装置、系统及存储介质

    公开(公告)号:CN110404265A

    公开(公告)日:2019-11-05

    申请号:CN201910676451.X

    申请日:2019-07-25

    Abstract: 本发明提供了一种基于博弈残局在线解算的多人非完备信息机器博弈方法、装置、系统及存储介质,该多人非完备信息机器博弈方法包括:步骤1:首先根据卡牌抽象算法进行实时的卡牌抽象;步骤2:如果S不是智能体采取动作的博弈局面,则需要更新各个玩家的策略σ;步骤3:等待当前博弈局面需要采取动作的玩家采取某一动作后,游戏往下进行,如果S是轮到智能体采取动作的博弈局面则同样先更新玩家手牌分布,建立子博弈树后计算当前博弈局面的策略σ,然后智能体根据σ采取一个动作a后游戏继续向下进行。本发明的有益效果是:本发明相比之前的算法灵活性适用性更强,适用于现实世界的博弈场景,可以根据针对不同的现实博弈局面计算相应的策略。

    基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质

    公开(公告)号:CN108447080B

    公开(公告)日:2023-05-23

    申请号:CN201810175534.6

    申请日:2018-03-02

    Abstract: 本发明公开了一种基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质,其方法包括:获取跟踪目标的当前视频帧的检测响应以及当前视频帧之前的所有视频帧的跟踪片段;为每一条跟踪片段计算其置信度,其中,跟踪片段置信度是指当前已经完成部分连接的跟踪片段的可信赖程度;根据置信度的大小,将所有的跟踪片段分为高可靠度跟踪片段和低可靠度跟踪片段两部分,并以当前视频帧的检测响应为关联对象,为高可靠度跟踪片段进行局部数据关联处理,为低可靠度跟踪片段进行全局数据关联处理。本发明可以有效降低关联算法的时间复杂度,能够有效缓解在跟踪的过程中出现的局部遮挡问题,同时可以实现算法的鲁棒性和实时性的均衡。

    一种基于自监督的跨模态深度哈希检索方法

    公开(公告)号:CN110309331B

    公开(公告)日:2021-07-27

    申请号:CN201910599265.0

    申请日:2019-07-04

    Abstract: 本发明专利涉及一种基于自监督的跨模态联合哈希检索方法,该方法包括以下步骤:步骤1:针对图像模态数据进行处理:采用深度卷积神经网络对图像模态的数据进行特征提取,对图片数据进行哈希学习,将深度卷积神经网络的最后一层全连接层的节点个数设置为哈希码的长度;步骤2:针对文本模态数据进行处理:使用词袋模型对文本数据进行建模,建立一个两层的全连接神经网络对文本模态的数据进行特征提取,神经网络的输入是使用词袋模型表示的词向量,第一个全连接层节点的数据与第二个全连接层节点的数据与哈希码的长度相同;步骤3:针对类别标签处理的神经网络:采用自监督的训练方式从标签数据中提取语义特征;步骤4:最小化图像与文本网络所提取的特征与标签网络的语义特征间的距离,使得图像与文本网络的哈希模型能够更充分学习不同模态间的语义特征。

    基于深度信息的相关滤波跟踪方法及装置

    公开(公告)号:CN107784663B

    公开(公告)日:2020-10-20

    申请号:CN201711124878.6

    申请日:2017-11-14

    Abstract: 本发明公开了一种基于深度信息的相关滤波跟踪方法及装置,其方法包括:基于深度图的图像分割技术,自适应性量化深度信息,得到深度图像分割结果;利用深度图像分割结果,根据不同场景构建相应的三维空间模型的分层结构;利用分层结构,并结合核相关滤波跟踪算法处理目标尺度变化及检测遮挡。本发明一方面过滤前景和背景信息减少跟踪的干扰因素,结合成熟的图像特征提取技术;另一方面这样的分层结构简化了深度信息的使用方法,使得处理目标尺度变化以及检测遮挡更为容易。结合核相关滤波跟踪算法实现了使用二维表观模型在空间结构下的跟踪方法,能够有效应对遮挡和处理目标尺度变化,提高视觉跟踪效果。

    基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质

    公开(公告)号:CN108447080A

    公开(公告)日:2018-08-24

    申请号:CN201810175534.6

    申请日:2018-03-02

    Abstract: 本发明公开了一种基于分层数据关联和卷积神经网络的目标跟踪方法、系统和存储介质,其方法包括:获取跟踪目标的当前视频帧的检测响应以及当前视频帧之前的所有视频帧的跟踪片段;为每一条跟踪片段计算其置信度,其中,跟踪片段置信度是指当前已经完成部分连接的跟踪片段的可信赖程度;根据置信度的大小,将所有的跟踪片段分为高可靠度跟踪片段和低可靠度跟踪片段两部分,并以当前视频帧的检测响应为关联对象,为高可靠度跟踪片段进行局部数据关联处理,为低可靠度跟踪片段进行全局数据关联处理。本发明可以有效降低关联算法的时间复杂度,能够有效缓解在跟踪的过程中出现的局部遮挡问题,同时可以实现算法的鲁棒性和实时性的均衡。

    一种基于博弈残局在线解算的多人非完备信息机器博弈方法、装置、系统及存储介质

    公开(公告)号:CN110404265B

    公开(公告)日:2022-11-01

    申请号:CN201910676451.X

    申请日:2019-07-25

    Abstract: 本发明提供了一种基于博弈残局在线解算的多人非完备信息机器博弈方法、装置、系统及存储介质,该多人非完备信息机器博弈方法包括:步骤1:首先根据卡牌抽象算法进行实时的卡牌抽象;步骤2:如果S不是智能体采取动作的博弈局面,则需要更新各个玩家的策略σ;步骤3:等待当前博弈局面需要采取动作的玩家采取某一动作后,游戏往下进行,如果S是轮到智能体采取动作的博弈局面则同样先更新玩家手牌分布,建立子博弈树后计算当前博弈局面的策略σ,然后智能体根据σ采取一个动作a后游戏继续向下进行。本发明的有益效果是:本发明相比之前的算法灵活性适用性更强,适用于现实世界的博弈场景,可以根据针对不同的现实博弈局面计算相应的策略。

    一种基于自监督的跨模态深度哈希检索方法

    公开(公告)号:CN110309331A

    公开(公告)日:2019-10-08

    申请号:CN201910599265.0

    申请日:2019-07-04

    Abstract: 本发明专利涉及一种基于自监督的跨模态联合哈希检索方法,该方法包括以下步骤:步骤1:针对图像模态数据进行处理:采用深度卷积神经网络对图像模态的数据进行特征提取,对图片数据进行哈希学习,将深度卷积神经网络的最后一层全连接层的节点个数设置为哈希码的长度;步骤2:针对文本模态数据进行处理:使用词袋模型对文本数据进行建模,建立一个两层的全连接神经网络对文本模态的数据进行特征提取,神经网络的输入是使用词袋模型表示的词向量,第一个全连接层节点的数据与第二个全连接层节点的数据与哈希码的长度相同;步骤3:针对类别标签处理的神经网络:采用自监督的训练方式从标签数据中提取语义特征;步骤4:最小化图像与文本网络所提取的特征与标签网络的语义特征间的距离,使得图像与文本网络的哈希模型能够更充分学习不同模态间的语义特征。

    基于深度信息的相关滤波跟踪方法及装置

    公开(公告)号:CN107784663A

    公开(公告)日:2018-03-09

    申请号:CN201711124878.6

    申请日:2017-11-14

    Abstract: 本发明公开了一种基于深度信息的相关滤波跟踪方法及装置,其方法包括:基于深度图的图像分割技术,自适应性量化深度信息,得到深度图像分割结果;利用深度图像分割结果,根据不同场景构建相应的三维空间模型的分层结构;利用分层结构,并结合核相关滤波跟踪算法处理目标尺度变化及检测遮挡。本发明一方面过滤前景和背景信息减少跟踪的干扰因素,结合成熟的图像特征提取技术;另一方面这样的分层结构简化了深度信息的使用方法,使得处理目标尺度变化以及检测遮挡更为容易。结合核相关滤波跟踪算法实现了使用二维表观模型在空间结构下的跟踪方法,能够有效应对遮挡和处理目标尺度变化,提高视觉跟踪效果。

Patent Agency Ranking