-
公开(公告)号:CN116383488A
公开(公告)日:2023-07-04
申请号:CN202310260656.6
申请日:2023-03-10
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F16/9535 , G06F17/16 , G06N20/20 , G06F21/62
Abstract: 本发明公开了一种基于本地差分隐私的以用户为中心的推荐方法及系统,所述方法包括:云服务器生成项目矩阵,并将所述项目矩阵发送给客户端;所述客户端根据本地评分数据集生成用户矩阵和用户平均评级向量,然后获取第一梯度、第二梯度和第三梯度并对所述第二梯度进行差分隐私处理,得到目标梯度;所述云服务器根据所述目标梯度更新所述项目矩阵;所述客户端获取更新后的所述项目矩阵并重新执行获取第一梯度、第二梯度和第三梯度的步骤,直至满足目标收敛条件。本发明提出的基于本地差分隐私的以用户为中心的推荐方法,通过将用户平均评分数据引入矩阵分解模型中,使得评分预测更加准确,实现了以用户为中心的推荐方法。