-
公开(公告)号:CN116355726A
公开(公告)日:2023-06-30
申请号:CN202310290377.4
申请日:2023-03-23
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种细胞封装系统,包括主控器、介电场生成组件、进样取样组件和微流控芯片,主控器输出待处理电压信号和进样控制信号,介电场生成组件连接主控器,用于对待处理电压信号进行信号编辑,得到稳定波形信号,并对稳定波形信号进行放大处理,得到目标波形信号。进样取样组件连接主控器,用于根据进样控制信号调节进样气压,得到目标进样气压,并根据目标进样气压推动放置于内部的细胞样品液进行流动。微流控芯片连接进样取样组件和介电场生成组件,用于接收流入的细胞样品液,并根据目标波形信号对细胞样品液进行细胞捕获,得到目标细胞样品。本发明能够精准控制每个液滴内细胞的数量。
-
公开(公告)号:CN113373039B
公开(公告)日:2023-03-17
申请号:CN202110592261.7
申请日:2021-05-28
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种基于逐级增压打印单个微粒的微流控芯片及基于逐级增压打印单个微粒方法。本发明实施例中的基于逐级增压打印单个微粒的微流控芯片,结构简单,随着捕获打印单元数量的增加及捕获槽数量的增加,可以实现高通量的单个微粒打印,提升单个微粒打印的效率。本发明实施例中的基于逐级增压打印单个微粒的微流控芯片可以实现无需视频监控的自动化打印,简化设备,减少人工操作,提升微粒的打印效率。此外,本发明实施例中的基于逐级增压打印单个微粒方法通过液体压强的精密调节,从而实现对微粒的捕获及打印,相对于现有技术通过磁力、声波力等打印方法,设备大为简化,成本显著降低。
-
公开(公告)号:CN109482247B
公开(公告)日:2021-04-13
申请号:CN201811216450.9
申请日:2018-10-18
Applicant: 哈尔滨工业大学(深圳)
IPC: B01L3/00
Abstract: 本发明涉及微流控芯片领域,本发明公开了一种微流控芯片制造工艺与微流控芯片,微流控芯片制造工艺包括以下步骤,先将可固化的液态的打印物按照设定的轨迹打印至多孔介质基材表面,然后待聚合物渗透至多孔介质材料后,对打印物进行固化。本发明既可以实现芯片上功能结构的快速、精确成型,又不需要昂贵的设备和复杂的操作流程,从而可以降低微流控芯片的生产成本,有助于微流控芯片的推广。
-
公开(公告)号:CN112067383A
公开(公告)日:2020-12-11
申请号:CN202010812995.7
申请日:2020-08-13
Applicant: 哈尔滨工业大学(深圳)
IPC: G01N1/28
Abstract: 本发明公开了多孔介质材料内液体流动控制方法与芯片,多孔介质材料内液体流动控制方法,包括以下步骤:打印具有流道与阀门的多孔介质基材,流道通过阀门进行分隔;将待检测的液体与用于调节液体的表面张力的调节剂混合,调节剂在设定时间内扩散至阀门并达到设定浓度后,改变液体在阀门中的通过状态。本发明利用调节剂调节液体的表面张力,同时基于调节剂的扩散实现液体延迟通过阀门或者被阀门延迟阻隔,操作方便,无需额外的控制装置,成本低廉。
-
公开(公告)号:CN110875399A
公开(公告)日:2020-03-10
申请号:CN202010062397.2
申请日:2020-01-20
Applicant: 哈尔滨工业大学(深圳)
IPC: H01L31/0236 , H01L31/0224 , H02S40/36
Abstract: 本发明涉及一种宽光谱吸收的薄膜太阳能电池及光伏发电装置;该薄膜太阳能电池包括前电极层、光吸收层、背电极层以及基底层,其中,前电极层远离光吸收层的表面分散分布有非金属材质的微纳米球,该微纳米球的半径为15nm-150nm;背电极层的内部分散分布有金属材质的微纳米半球,该微纳米半球的半径为25nm-250nm,且该微纳米半球与光吸收层之间的间距为10nm-100nm。该光伏发电装置包括太阳能电池组件、控制器、蓄电池组和直流-交流逆变器,太阳能电池组件包括多个电连接的薄膜太阳能电池。本发明采用复合陷光结构,同时实现短波段和长波段的吸收增强,可使薄膜太阳能电池及光伏发电装置的光电转换效率显著提高。
-
公开(公告)号:CN108339580B
公开(公告)日:2020-01-14
申请号:CN201810228424.1
申请日:2018-03-20
Applicant: 哈尔滨工业大学深圳研究生院
IPC: B01L3/00
Abstract: 本发明涉及微流控芯片领域,本发明公开了一种流体剪切力生成装置与流体剪切力生成方法,其中装置包括装置主体,装置主体上设置有主流道与至少两条分支流道,主流道的两端设置有流体入口与主流道流体出口,分支流道的一端与主流道连通,另一端设有分支流道流体出口,分支流道内设有阀门,通过控制阀门的闭合程度调节该分支流道内可供流体通过的截面积。本发明利用主流道、分支流道和阀门的配合,可以在不改变输入流体流速与装置结构的情况下实现流体剪切力大小与比值的动态变化。同时,本发明可以极大的扩展首级与末级分支流道中流体剪切力的比值范围,并且可以覆盖范围内任意一点的比值,本发明结构简单,易于推广实现。
-
公开(公告)号:CN109569748A
公开(公告)日:2019-04-05
申请号:CN201811277869.5
申请日:2018-10-30
Applicant: 哈尔滨工业大学(深圳)
IPC: B01L3/00
Abstract: 本发明涉及微流控芯片领域,本发明公开了一种流道内液体流速调节方法与微流控芯片,流道内液体流速调节方法包括以下步骤,在多孔介质基材上形成的流道内设置阻隔段,通过阻隔段调节流道内用于液体流过的截面的面积,从而实现对流道内液体流速的调节。本发明可以实现流道内液体流速的调节,填补了目前该领域的技术空白,不需要昂贵的设备和复杂的操作流程,有助于微流控芯片的推广。
-
公开(公告)号:CN115212935B
公开(公告)日:2023-12-22
申请号:CN202210687456.4
申请日:2022-06-17
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种用于电化学检测的微流控芯片及其制备方法与应用。所述微流控芯片包括芯片本体和声波引发组件,所述芯片本体依次包括电极层、微流道层和顶层,所述微流道层中设有微流道,所述电极层、所述顶层分别与所述微流道相连通,所述顶层内设有与所述微流道相连通的微坑阵列;检测时,所述微坑阵列形成气泡阵列;所述声波引发组件引发声场,在声场作用下所述气泡阵列形成声微流,所述声微流增加待测样品与电极的接触,从而实现大的响应信号和高灵敏检测。本发明中的微流控芯片应用于电化学检测中,具有高灵敏和低温升的特点。
-
公开(公告)号:CN115184415A
公开(公告)日:2022-10-14
申请号:CN202210688730.X
申请日:2022-06-17
Applicant: 哈尔滨工业大学(深圳)
IPC: G01N27/26 , G01N27/28 , G01N27/30 , G01N27/416
Abstract: 本发明公开了一种微流控芯片及其制备方法与应用。所述微流控芯片包括芯片本体和声微流引发机构,所述芯片本体依次包括电极层、微流道层和顶层,所述微流道层中设有微流道,所述电极层、所述顶层分别与所述微流道相连通,所述电极层包括微柱阵列电极;检测时,在声微流引发机构的引发作用下,于微流道内集成声微流,所述声微流增加微流道内待测样品与所述微柱阵列电极的接触,从而实现大的响应信号。本发明中的微流控芯片应用于电化学检测中,具有高灵敏和低温升的特点。
-
公开(公告)号:CN112816535B
公开(公告)日:2022-08-12
申请号:CN202011622339.7
申请日:2020-12-30
Applicant: 哈尔滨工业大学(深圳)
IPC: G01N27/327 , B81C1/00
Abstract: 本发明公开了一种图案化电极及其制备方法和应用,该方法包括以下步骤:取芯片,芯片包括导电基板、光刻胶和第二基板,第二基板靠近光刻胶的一侧表面上设置有图案化流道,图案化流道包括第一流道,第一流道具有第一开口和第二开口,在第一流道上形成第二流道,第一流道与第二流道形成连通的闭环通道,闭环通道内设置有第三流道,第三流道的一端开口设置于闭环通道内,第三流道的另一端连通闭环通道;从第一开口或第二开口注入不透光液体,光照使得光刻胶固化,去除未固化的光刻胶;关闭第三流道的一端开口,从第一开口或第二开口注入腐蚀液,然后清洗掉腐蚀液。本发明能够利用空气表面张力保护实现任意形状电极的制备,可以用于电化学分析领域。
-
-
-
-
-
-
-
-
-