一种清洗InGaN基LED V型坑侧壁In的方法

    公开(公告)号:CN115692552A

    公开(公告)日:2023-02-03

    申请号:CN202211141166.6

    申请日:2022-09-20

    Abstract: 本发明公开了一种清洗InGaN基LED V型坑侧壁In的方法,该LED由衬底、N层、准备层、量子阱InGaN/GaN发光层、P层组成,量子阱InGaN/GaN发光层分为量子阱InGaN层、GaN盖层、量子垒GaN,GaN盖层包括平台区域和V型坑区域,GaN盖层分为两个生长阶段,即:第一生长阶段通入不含H2的气体生长GaN盖层,第二生长阶段通入含H2的气体进行清洗。这种生长方法达到清洗了量子阱InGaN层V型坑侧壁的中的In同时又保护量子阱InGaN层平台区域的In,清洗量子阱InGaN层V型坑侧壁的中的In后V型坑侧壁的禁带宽度增大,减少了电子向V型坑泄露,提高了LED发光效率。

    一种用于制造红光Micro-LED的氮化物薄膜结构

    公开(公告)号:CN115084331A

    公开(公告)日:2022-09-20

    申请号:CN202210354691.X

    申请日:2022-04-06

    Abstract: 本发明公开了一种用于制造红光Micro‑LED的氮化物薄膜结构,晶圆作为制造该氮化物薄膜结构的衬底,且晶圆的表面法向与表面晶向之间的夹角为1.0至3.0°,薄膜表面及内部含有台阶形状的层堆叠,所述层堆叠包括:掺Si层、发光量子阱层和掺Mg层。所述台阶形状是由自然生长得到,大小不一、形状不规则,分布均匀,单个台阶由台阶平台和台阶侧壁构成,台阶平台和台阶侧壁之间具有一定夹角,其夹角在90°±10°之间。本发明的优点是:(1)用该氮化物薄膜制备的红光Micro‑LED在工作时具有较低的工作电压;(2)用该氮化物薄膜制备的红光Micro‑LED在工作时,侧表面及其附近的非辐射复合较少,电‑光转换的量子效率较高;(3)用该氮化物薄膜制备的红光Micro‑LED在薄膜面内不同位置上均具有稳定的性能。

    一种Si衬底GaN外延薄膜的生长方法
    25.
    发明公开

    公开(公告)号:CN114823284A

    公开(公告)日:2022-07-29

    申请号:CN202210337909.0

    申请日:2022-04-01

    Abstract: 本发明公开了一种Si衬底GaN外延薄膜的生长方法,该生长方法是在Si衬底上生长GaN薄膜时避免了AlN或AlN/AlGaN缓冲层的生长,通过对Si衬底预处理,形成隔离Si与Ga的界面,避免Ga与Si反应产生回熔;通过调整GaN应力调控层与GaN层的生长温度,调节材料生长过程产生的应力,从而形成连续完整的单晶GaN薄膜。该方法避免了AlN或AlN/AlGaN缓冲层的生长,从而有效地减少AlN在反应室中石墨和喷头等位置的沉积,降低外延生长的成本,减少因为沉积物导致的不稳定性和沉积物处理引起的不确定性和成本增加,有效地降低外延生长的成本和沉积物处理的频率,提高外延生长的稳定性、可靠性和产品良率,在所述GaN薄膜上可生长其他结构或功能层,应用于功率电子器件、照明等领域。

    一种半导体发光二极管的外延装置

    公开(公告)号:CN108470807B

    公开(公告)日:2019-10-29

    申请号:CN201810106850.8

    申请日:2018-02-02

    Abstract: 本发明提供了一种半导体发光二极管的外延装置,该装置包括依次接触的N电极、N型半导体接触层、N型半导体导电层、发光层、P型半导体导电层、P型半导体接触层和P电极;所述N电极与N型半导体接触层之间的界面接触电阻,通过N型半导体接触层的掺杂浓度进行调节;或P电极与P型半导体接触层之间的界面接触电阻,通过P型半导体接触层的掺杂浓度进行调节。本发明在半导体的表面与金属电极接触的界面改善电流扩展,由于金属与半导体的接触非常敏感,界面的电导性易于调控,外延中仅需很薄的一层,就可以实现电流扩展的显著改善,且器件电压的升高幅度较小。

    一种半导体发光二极管的外延装置

    公开(公告)号:CN108470807A

    公开(公告)日:2018-08-31

    申请号:CN201810106850.8

    申请日:2018-02-02

    Abstract: 本发明提供了一种半导体发光二极管的外延装置,该装置包括依次接触的N电极、N型半导体接触层、N型半导体导电层、发光层、P型半导体导电层、P型半导体接触层和P电极;所述N电极与N型半导体接触层之间的界面接触电阻,通过N型半导体接触层的掺杂浓度进行调节;或P电极与P型半导体接触层之间的界面接触电阻,通过P型半导体接触层的掺杂浓度进行调节。本发明在半导体的表面与金属电极接触的界面改善电流扩展,由于金属与半导体的接触非常敏感,界面的电导性易于调控,外延中仅需很薄的一层,就可以实现电流扩展的显著改善,且器件电压的升高幅度较小。

Patent Agency Ranking