基于石墨烯的可调谐太赫兹超表面及电路

    公开(公告)号:CN111129779A

    公开(公告)日:2020-05-08

    申请号:CN201911296964.4

    申请日:2019-12-17

    Abstract: 本发明公开了一种基于石墨烯的可调谐太赫兹超表面及电路,包括由下至上依次设置的金属接地板、介质层、石墨烯金属层,其中,所述金属接地板作为反射基底;所述石墨烯金属层包括两对石墨烯贴片和两个金属环,两个金属环为外金属环和内金属环,两对石墨烯贴片设置在外金属环和内金属环之间。本发明通过改变施加两对石墨烯贴片上的偏置电压,从而改变石墨烯贴片的化学势,改变两个环路之间的耦合,实现本发明可调谐太赫兹超表面在低反射率和高反射率之间的切换,进而实现超表面的可调谐,解决了单一超表面单元结构不能同时实现吸波模式和反射模式的问题。

    一种硫化钼碳纳米球碳纳米纤维复合电极材料及其制备方法

    公开(公告)号:CN110844939A

    公开(公告)日:2020-02-28

    申请号:CN201911096768.2

    申请日:2019-11-12

    Abstract: 本发明公开了一种硫化钼碳纳米球碳纳米纤维复合电极材料及其制备方法,包括以下步骤:步骤S1,制备钼酸钠/硫脲/葡萄糖/细菌纤维素水凝胶复合材料;步骤S2,将钼酸钠/硫脲/葡萄糖/细菌纤维素水凝胶复合材料中的钼酸钠/硫脲转化成二硫化钼,葡萄糖转化为碳纳米球,细菌纤维素转化为碳纳米纤维以作为超级电容器电极材料。采用本发明的技术方案,能够构造出碳纳米纤维网状结构,并且结构中的二硫化钼沿碳纳米纤维生长,与二硫化钼/碳纳米纤维结构对比,添加的葡萄糖能够转化成碳纳米球,增加电极中的电子导电性,提高电极中电子的传输效率。该技术方案可以提供一种新型的制造电极材料的制备方法。

    一种低复杂度的极化参数估计跟踪装置及方法

    公开(公告)号:CN110837075A

    公开(公告)日:2020-02-25

    申请号:CN201911109436.3

    申请日:2019-11-13

    Inventor: 李航 程知群

    Abstract: 本发明公开了一种低复杂度的极化参数估计跟踪装置及方法,装置包括天线信号处理模块和极化参数估计模块,所述天线信号处理模块包括若干子阵信号处理模块,将混合双极化天线阵列接收到的模拟信号波束成型并转换为数字信号;所述极化参数估计模块用于将天线信号处理模块输出进行信号处理,估计来波极化参数。本发明采用平面混合双极化阵列来对信号进行接收,同时充分利用来波到达角自适应跟踪与估计以提高波束成型接收信噪比,从而提高极化参数估计的精度和收敛速度,而且在计算过程中仅仅涉及普通的四则运算,计算量小便于快速实现。

    宽带混合F/J类功率放大器及其设计方法

    公开(公告)号:CN110311640A

    公开(公告)日:2019-10-08

    申请号:CN201910570054.4

    申请日:2019-06-27

    Abstract: 本发明公开了一种宽带混合F/J类功率放大器及其设计方法,包括输入匹配模块、偏置电路模块、晶体管、混合谐波控制模块,输出基波匹配模块,其中,混合谐波控制模块与晶体管的输出端相连接,采用多点混合谐波控制匹配实现至少三个频率点的谐波阻抗控制,其中,控制中间频率点的二次谐波阻抗短路同时三次谐波阻抗开路,以实现F类功率放大器的特征;以及控制另外两个频率点的二次谐波短路,以实现J类功率放大器的特征。实现功率放大器混合;输出基波匹配模块与混合谐波控制模块相连接,用于将谐波控制电路后的阻抗匹配至负载阻抗,以实现最大效率传输。采用本发明的技术方案,能够使功率放大器在宽带下保证高效率以及平坦度。

    一种非接触式生理信号检测方法

    公开(公告)号:CN106264502B

    公开(公告)日:2019-09-24

    申请号:CN201610891027.3

    申请日:2016-10-13

    Abstract: 本发明公开一种非接触式生理信号检测方法,包括以下步骤:通过多普勒雷达传感器向人体胸腔发射连续波雷达信号;将回波信号和发射震荡频率信号进行混频处理并检波后获取反应人体呼吸和心跳变化的低频信号;对多普勒雷达传感器输出端进行阻抗匹配并滤除低频信号中的直流分量;将经步骤S3处理后的信号进行信号放大;通过0.1Hz‑10Hz的带通滤波器对其输入信号进行滤波处理;采用数字滤波技术将经步骤S5处理后的信号进行频率滤波从而获取呼吸信号和心跳信号。采用本发明的技术方案,通过将通用多普勒雷达传感器工作在连续波模式,并采用多级滤波方法,从而实现非接触检测人体生理信号,避免传统接触式检测设备带给患者的束缚和不舒适感。

    一种高线性高效率功率放大器

    公开(公告)号:CN105978495B

    公开(公告)日:2019-02-15

    申请号:CN201610398127.2

    申请日:2016-06-06

    Abstract: 本发明提供一种高线性高效率功率放大器,包括等分威尔金森功分器、载波功率放大电路、峰值功率放大电路和负载调制网络,载波功率放大电路采用E3F类功率放大器,峰值功率放大电路采用C类功率放大器;载波输出匹配网络包括第一传输线TL1、第二传输线TL2、第三传输线TL3、第四传输线TL4、第五传输线TL5、第六传输线TL6、第七传输线TL7和第八传输线TL8。相对于现有技术,本发明利用E3F类功放的谐波抑制能力为Doherty提供足够高的效率,采用普通的C类功放提供足够的输出功率,通过载波输出匹配电路很好的将所有偶次谐波短路和三次谐波开路,使得功放输出的电流波形近似为半正弦波,电压波形近似为方波,极大地提高了功放的效率和线性度。

    一种高功率高效率Doherty功率放大器

    公开(公告)号:CN106301238B

    公开(公告)日:2019-01-04

    申请号:CN201610595548.4

    申请日:2016-07-25

    Abstract: 本发明提供一种高功率高效率Doherty功率放大器,包括不等分威尔金森功分器、载波功率放大电路、峰值功率放大电路和负载调制网络,载波功率放大电路采用连续B/J类功率放大器,峰值功率放大电路采用两级功放级联结构,辅峰值功率放大电路采用C类功率放大器,主峰值功率放大电路采用连续B/J类功率放大器。相对于现有技术,本发明采用新的Doherty结构,这样可以在保证效率的同时极大的提高饱和输出功率。辅峰值功放采用普通的C类,主峰值功放和载波功放采用连续B/J类,利用其谐波控制网络可以很好的控制二次和四次短路,三次和五次开路,使得功放输出的电流波形近似为半正弦波,电压波形近似为方波,使Doherty得回退效率和饱和输出功率得到极大提升。

    一种提高功率回退动态范围的Doherty功率放大器及其实现方法

    公开(公告)号:CN106374863B

    公开(公告)日:2019-01-01

    申请号:CN201610888767.1

    申请日:2016-10-12

    Abstract: 本发明提供一种提高功率回退动态范围的Doherty功率放大器及其实现方法,包括等分威尔金森功分器、载波功率放大电路、峰值功率放大电路和新型负载调制网络,其中,等分威尔金森功分器用于将输入功率进行等分后分别输出给载波功率放大电路和峰值功率放大电路,载波功率放大电路的输出端接86.6欧四分之一波长阻抗变换器T1,并与峰值功率放大电路的输出端相连接将功率合路输出给负载。相对于现有技术,本发明通过改进传统Doherty功率放大器的负载调制网络,增大低输入功率状态下主功放的负载阻抗,提高了Doherty功放的高效率功率回退范围。

Patent Agency Ranking