一种基于代价敏感学习的排水管道缺陷自动检测方法

    公开(公告)号:CN110516694B

    公开(公告)日:2022-04-12

    申请号:CN201910607816.3

    申请日:2019-07-05

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于代价敏感学习的排水管道缺陷自动检测方法,包括:构建排水管道数据集;估算每种错误分类带来的损失,构建代价矩阵;通过代价矩阵构建置信度向量;基于置信度向量构建代价敏感的卷积神经网络;并使用管道数据集训练代价敏感的卷积神经网络。使用训练好的网络对待识别的图像进行识别,得到图像中包含缺陷的概率。基于代价矩阵构建的代价敏感的卷积神经网络能够以最小化代价为目标而不是盲目地追求分类精度,从而实现更为经济,有效的排水管道缺陷自动检测系统。

    一种考虑图像集复杂性的石材纹理图像CNN识别方法

    公开(公告)号:CN108985349B

    公开(公告)日:2021-09-28

    申请号:CN201810673021.8

    申请日:2018-06-26

    Applicant: 福州大学

    Abstract: 本发明涉及一种考虑图像集复杂性的石材纹理图像CNN识别方法,首先加载石材图像集;接着将石材图像集的复杂性量化为计算石材图像集的本征维数,使用小波图像去噪方法处理石材图像集中的每张石材图像以降低石材图像集复杂性;然后构建卷积神经网络,并使用去噪后的石材图像训练卷积神经网络;接着使用训练好的卷积神经网络模型识别石材图像;最后依据卷积神经网络模型的输出结果,选择最大的前5个值对应的石材类别,将其按照值从大到小的顺序依次作为前5类最相似石材。本发明将小波图像去噪结合卷积神经网络用以石材纹理图像识别,有效提高了识别的准确率。

    一种融合差分隐私GAN和PATE模型的表格数据隐私保护方法

    公开(公告)号:CN109784091A

    公开(公告)日:2019-05-21

    申请号:CN201910038938.5

    申请日:2019-01-16

    Applicant: 福州大学

    Abstract: 本发明涉及一种融合差分隐私GAN和PATE模型的表格数据隐私保护方法。包括步骤1:使用原始表格数据训练差分隐私生成模型;步骤2:使用原始表格数据在差分隐私预算下训练教师分类器;步骤3:使用生成模型生成“虚假”表格数据,并使用教师分类器对“虚假”表格数据预测标签,挑选预测标签和生成标签一致的数据,定义“可用”数据集,使用“可用”数据集训练学生分类器;步骤4:将生成模型和学生分类器发布,使用生成模型合成数据,使用学生模型挑选数据,完成数据分析任务。本发明方法是在数据发布阶段对表格数据实施隐私保护,数据分析师不可以通过生成模型复原原始训练数据,也不能通过学生模型推测原始训练数据,实现对原始表格数据的保护,并满足数据分析师对数据的需求。

    一种考虑纹理复杂性的域映射GANs图像着色方法

    公开(公告)号:CN108876870A

    公开(公告)日:2018-11-23

    申请号:CN201810538118.8

    申请日:2018-05-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种考虑纹理复杂性的域映射GANs图像着色方法,收集图像,并建立图像训练集;对图像训练集进行预处理,包括:图像深度检测、图像裁剪和图像归一化;通过模型选择、图像集的复杂性计算以及循环一致损失系数选择,利用反向传播和Adam优化算法更新模型网络参数,进行模型训练;输入待着色的图像,采用步骤S3计算待着色图像集的图像集合复杂性,选择与其复杂性相同且已训练的模型,进行图像着色,输出相应的着色图像。本发明提出的方法能根据图像集纹理复杂度,选取大小合适的循环一致损失系数,使得模型能够对不同纹理复杂性的图像进行着色,具有很好的通用性;同时将深度学习引入图像着色领域,为图像着色提供了一种新的思路。

    一种利用全量数据训练零样本图像分类方法

    公开(公告)号:CN110826639B

    公开(公告)日:2023-05-12

    申请号:CN201911099506.1

    申请日:2019-11-12

    Applicant: 福州大学

    Abstract: 本发明涉及一种利用全量数据训练零样本图像分类方法,包括以下步骤:步骤S1:将全量数据分为源数据和目标数据;步骤S2:将源数据集和目标数据集输入视觉特征网络,将原始图像映射到视觉特征空间,得到图像视觉特征向量;步骤S3:将原始图像的低维属性语义通过语义转换网络映射到高维,得到语义特征向量;步骤S4:根据得到的图像视觉特征向量和语义特征向量,利用视觉‑属性语义衔接网络完成融合,得到拼接结果;步骤S5:根据拼接结果,通过得分子网络在语义空间中产生原始图像每一类的得分,并根据得分输出最终的预测结果。本发明能够有效的解决图像类别标签缺失问题。

    一种基于多任务学习的排水管道异常类型自动检测方法

    公开(公告)号:CN110930377B

    公开(公告)日:2022-05-13

    申请号:CN201911125639.1

    申请日:2019-11-18

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于多任务学习的排水管道异常类型自动检测方法。首先通过分析管道缺陷深度特征信息将特征空间存在重叠的类别划分到同一分组中;然后基于分组情况构建多任务学习深度神经网络,该网络将分类任务划分为两级任务,高级分类任务尝试区分不同分组的缺陷图像,低级任务拥有多个子任务,分别用于着重区分组内具有相似特征空间的缺陷类型,最终的缺陷分类结果来自条件概率。本发明通过引入多任务学习策略使得模型能够减少特征空间重叠带来的精度损失,提升模型的检测精度,从而实现更为有效的排水管道缺陷自动检测系统。

    一种基于外部知识的视角级文本情感分类方法及系统

    公开(公告)号:CN111274396A

    公开(公告)日:2020-06-12

    申请号:CN202010062565.8

    申请日:2020-01-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于外部知识的视角级文本情感分类方法及系统,包括步骤:对视角级文本进行特征化处理,并捕获文本的双向语义依赖关系;通过动态注意力机制将当前单词与外部知识同义词相结合,并引入哨兵向量避免外部知识对模型的误导;通过位置注意力机制来判断每个单词对视角词的贡献程度;通过计算每个记忆内容的注意力得分,利用门限循环单元将每层的注意力得分与上一层的输出结果非线性结合,并将最后一层作为文本的情感特征表示;利用分类函数得到最终的情感分类结果。本发明能够提高视角级文本情感分类的性能和降低资源的消耗。

    一种基于注意力机制融合的跨领域情感分类系统

    公开(公告)号:CN110874411A

    公开(公告)日:2020-03-10

    申请号:CN201911138355.6

    申请日:2019-11-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于注意力机制融合的跨领域情感分类系统。包括:评论文本预处理模块,用于获取源领域和目标领域文本的向量形式;文本语义学习模块,用于学习词语之间的语义依赖关系;注意力机制融合模块,通过将不同的注意力方式进行融合,获得词语对文本分类的综合权重;分层注意模块,分别从词级和句子级计算文本的注意力权重,判断词语对句子表示,句子对文档表示的权重;情感类别输出模块,利用分类函数得到最终的情感分类结果。本发明能够自动抽取出目标领域与源领域的潜在通用特征,并对特征进行抽象和组合,最终识别出目标领域文本的情感类别。

    基于注意力机制的水军评论检测系统及方法

    公开(公告)号:CN110874397A

    公开(公告)日:2020-03-10

    申请号:CN201911138610.7

    申请日:2019-11-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于注意力机制的水军评论检测系统及方法。包括文本特征处理模块,用于将文本特征进行向量化处理并提取文本的离散特征进行归一化处理;行为特征提取模块,用于将行为特征进行向量化处理并进行归一化处理;注意力机制权重计算模块,用于计算归一化后的文本特征、行为特征的注意力权重;集成学习模块,将带有权重的行为特征、文本特征作为输入,用分类函数得到评论最终的分类结果。本发明提出的系统及方法能够自动抽取出有效特征,并对特征进行抽象和组合,最终识别出分类结果。

Patent Agency Ranking