-
公开(公告)号:CN110826638B
公开(公告)日:2023-04-18
申请号:CN201911099492.3
申请日:2019-11-12
Applicant: 福州大学
IPC: G06V10/764 , G06V10/40 , G06V10/77 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0442 , G06N3/045 , G06N3/0455 , G06N3/0475 , G06N3/084
Abstract: 本发明涉及一种基于重复注意力网络的零样本图像分类模型,包括重复注意力网络模块,用于训练并获取图像区域序列信息;生成对抗网络模块,用于获取视觉误差信息;视觉特征提取网络处理模块,用于得到图像一维视觉特征向量;属性语义转换网络模块,用两层的线性激活层将低维的属性语义向量映射到与视觉特征向量维度相同的高维特征向量;视觉‑属性语义衔接网络,实现视觉特征向量与属性语义特征向量的融合;得分分类结果和奖励输出模块,采用交叉熵损失对已见过带标签的类别进行分类,而奖励输出是对未见过的无标签数据进行惩罚,以及惩罚无标签数据中见过的类别和未见过的类别最有可能性的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
公开(公告)号:CN110826639A
公开(公告)日:2020-02-21
申请号:CN201911099506.1
申请日:2019-11-12
Applicant: 福州大学
IPC: G06K9/62
Abstract: 本发明涉及一种利用全量数据训练零样本图像分类方法,包括以下步骤:步骤S1:将全量数据分为源数据和目标数据;步骤S2:将源数据集和目标数据集输入视觉特征网络,将原始图像映射到视觉特征空间,得到图像视觉特征向量;步骤S3:将原始图像的低维属性语义通过语义转换网络映射到高维,得到语义特征向量;步骤S4:根据得到的图像视觉特征向量和语义特征向量,利用视觉-属性语义衔接网络完成融合,得到拼接结果;步骤S5:根据拼接结果,通过得分子网络在语义空间中产生原始图像每一类的得分,并根据得分输出最终的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
公开(公告)号:CN110795585B
公开(公告)日:2022-08-09
申请号:CN201911099493.8
申请日:2019-11-12
Applicant: 福州大学
Abstract: 本发明涉及一种基于生成对抗网络的零样本图像分类模型,包括生成对抗网络模块,用于获取视觉误差信息;视觉特征提取网络处理模块,用于得到图像一维视觉特征向量;属性语义转换网络模块,用两层的线性激活层将低维的属性语义向量映射到与视觉特征向量维度相同的高维特征向量;视觉‑属性语义衔接网络,实现视觉特征向量与属性语义特征向量的融合;得分分类结果和奖励输出模块,采用交叉熵损失对已见过带标签的类别进行分类,而奖励输出是对未见过的无标签数据进行惩罚,以及惩罚无标签数据中见过的类别和未见过的类别最有可能性的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
公开(公告)号:CN110826638A
公开(公告)日:2020-02-21
申请号:CN201911099492.3
申请日:2019-11-12
Applicant: 福州大学
IPC: G06K9/62
Abstract: 本发明涉及一种基于重复注意力网络的零样本图像分类模型,包括重复注意力网络模块,用于训练并获取图像区域序列信息;生成对抗网络模块,用于获取视觉误差信息;视觉特征提取网络处理模块,用于得到图像一维视觉特征向量;属性语义转换网络模块,用两层的线性激活层将低维的属性语义向量映射到与视觉特征向量维度相同的高维特征向量;视觉-属性语义衔接网络,实现视觉特征向量与属性语义特征向量的融合;得分分类结果和奖励输出模块,采用交叉熵损失对已见过带标签的类别进行分类,而奖励输出是对未见过的无标签数据进行惩罚,以及惩罚无标签数据中见过的类别和未见过的类别最有可能性的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
公开(公告)号:CN110826639B
公开(公告)日:2023-05-12
申请号:CN201911099506.1
申请日:2019-11-12
Applicant: 福州大学
IPC: G06V10/764 , G06V10/774
Abstract: 本发明涉及一种利用全量数据训练零样本图像分类方法,包括以下步骤:步骤S1:将全量数据分为源数据和目标数据;步骤S2:将源数据集和目标数据集输入视觉特征网络,将原始图像映射到视觉特征空间,得到图像视觉特征向量;步骤S3:将原始图像的低维属性语义通过语义转换网络映射到高维,得到语义特征向量;步骤S4:根据得到的图像视觉特征向量和语义特征向量,利用视觉‑属性语义衔接网络完成融合,得到拼接结果;步骤S5:根据拼接结果,通过得分子网络在语义空间中产生原始图像每一类的得分,并根据得分输出最终的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
公开(公告)号:CN110795585A
公开(公告)日:2020-02-14
申请号:CN201911099493.8
申请日:2019-11-12
Applicant: 福州大学
Abstract: 本发明涉及一种基于生成对抗网络的零样本图像分类模型,包括生成对抗网络模块,用于获取视觉误差信息;视觉特征提取网络处理模块,用于得到图像一维视觉特征向量;属性语义转换网络模块,用两层的线性激活层将低维的属性语义向量映射到与视觉特征向量维度相同的高维特征向量;视觉-属性语义衔接网络,实现视觉特征向量与属性语义特征向量的融合;得分分类结果和奖励输出模块,采用交叉熵损失对已见过带标签的类别进行分类,而奖励输出是对未见过的无标签数据进行惩罚,以及惩罚无标签数据中见过的类别和未见过的类别最有可能性的预测结果。本发明能够有效的解决图像类别标签缺失问题。
-
-
-
-
-