-
公开(公告)号:CN114044032A
公开(公告)日:2022-02-15
申请号:CN202111304092.9
申请日:2021-11-05
Applicant: 北京全路通信信号研究设计院集团有限公司 , 清华大学
Abstract: 本发明提出一种列车节能驾驶曲线动态优化方法和系统,本发明结合电动列车模型,依托庞氏极值原理,结合列车最优驾驶“最大牵引‑牵引巡航‑惰行‑制动巡航‑最大制动”工况集合,构建基于时空分解的高维图网络,以离散化的“时‑空‑能”状态点作为节点,使用多维复杂资源描述节点间连接弧,将单列车最优控制问题抽象为带时间窗口约束的最短路径旅行问题。本发明公开的方法计算量小,符合系统实时计算要求,可以直接应用于列车节能驾驶曲线优化系统,以解决当前列车自动驾驶系统运算速度与存储能力有限,复杂算法往往难以满足其运算的实时性需求的问题。
-
公开(公告)号:CN110728771A
公开(公告)日:2020-01-24
申请号:CN201910960474.3
申请日:2019-10-10
Applicant: 清华大学 , 北京全路通信信号研究设计院集团有限公司
Abstract: 本发明涉及一种自动驾驶系统加速度快速在线估计方法及装置,所述方法包括其根据时间窗[(k-2w)T,kT]内的速度数据,采用最小二乘法进行速度曲线拟合来实现加速度的快速估计,所述时间窗[(k-2w)T,kT]内的速度数据记为从历史时刻(k-2w)T到当前kT的历史数据v((k-2w)T),v((k-2w+1)T),…,v((k-1)T),v(kT);根据速度曲线拟合误差的标准差与已知噪声标准差σξ间的关系以及实时计算的加速度a0(t)的相对估计偏差来动态调整所述时间窗[(k-2w)T,kT]的时间窗口的长度。通过最小二乘法的数据矩阵在滑动时间窗内可以实现加速度的快速估计,在ATO平台上采用定点数计算基本不会带来舍入误差累计,舍入误差也可接受。根据曲线拟合的标准差与已知噪声标准差间的关系以及实时计算的加速度的相对估计偏差来动态调整时间窗的长度从而实现低延时高准确度的加速度估计。
-
公开(公告)号:CN103226657A
公开(公告)日:2013-07-31
申请号:CN201310123576.2
申请日:2013-04-10
Applicant: 清华大学 , 北京全路通信信号研究设计院
IPC: G06F19/00
Abstract: 本发明涉及一种基于假设检验方法的ZPW2000A轨道电路仿真模型校核验证的方法,属于高速铁路信号系统技术领域。首先通过计算仿真模型可能测量点的相对灵敏度确定ZPW2000A轨道电路最终测量点,同时通过蒙特卡洛方法对仿真模型可能测量点的幅值数据进行计算得到检验统计量概率的区间分布函数,并求取ZPW2000A轨道电路的超椭球面接收域,最后通过测量ZPW2000A轨道电路最终测量点的信号幅值来验证ZPW2000A轨道电路与仿真模型的一致性。本发明方法利用样本数据推断出仿真模型与实物模型是否一致,验证所用的方法简单有效,具有严谨的理论依据和良好的可操作性,结论可靠性高。本发明建立的校核验证方法,可广泛用于高速铁路或普通铁路的轨道电路仿真系统的校核验证。
-
公开(公告)号:CN102034004A
公开(公告)日:2011-04-27
申请号:CN201010591817.2
申请日:2010-12-08
Applicant: 清华大学 , 北京全路通信信号研究设计院
IPC: G06F17/50
Abstract: 本发明涉及一种基于元模型的高速铁路信号系统地理线路建模方法,属于高速铁路信号系统技术领域。本方法通过建立基于参数方程的曲线坐标系簇和轨道区段模型,构建完整的高速铁路线路模型,并且在地理线路模型上给出了小跨度设备和大跨度设备的表达方法。本发明给出了地理线路的几何拓扑结构模型的构建方法,建立的模型具有简洁、完备、准确和可扩展等特点,可与高速列车动力学模型及其它信号设备模型一起用于高速铁路运行控制系统的仿真测试和验证。
-
公开(公告)号:CN119849908A
公开(公告)日:2025-04-18
申请号:CN202311352513.4
申请日:2023-10-18
Applicant: 清华大学 , 北京全路通信信号研究设计院集团有限公司
IPC: G06Q10/0635 , G06Q50/40 , G06N7/01
Abstract: 本公开涉及一种基于动态贝叶斯网络的运能风险确定方法及装置,确定包括至少一个线路的轨道交通路网,其中每个线路包括至少两个车站和相邻车站之间的运行区间。确定目标时间区间内每个车站的车站风险属性,以及每个运行区间的区间风险属性。根据轨道交通路网、每个车站风险属性、每个区间风险属性构建动态贝叶斯网络,并根据动态贝叶斯网络的联合分布建立高斯混合模型以得到网络参数。进一步基于目标时间区间内,每个车站风险属性值和每个区间风险属性值求解动态贝叶斯网络,得到轨道交通路网的路网运能风险。本公开通过构建贝叶斯网络的方式提升了运能风险推测过程的可解释性,并通过建立高斯混合模型提升了运能风险预测结果的准确性。
-
公开(公告)号:CN102436524B
公开(公告)日:2014-05-28
申请号:CN201110319433.X
申请日:2011-10-19
Applicant: 清华大学 , 北京全路通信信号研究设计院
Abstract: 本发明涉及一种模拟电路软故障的诊断方法,属于模拟电路故障诊断技术领域。本方法首先构造软故障诊断的模糊规则,当软故障特征参数的在线监测值选中软故障诊断的模糊规则后,将被选中模糊规则前项的归一化置信度推理到后项,得到对模糊规则后项的归一化置信度。然后,对后项的置信度进行加权处理,得到对模拟电路软故障集合中每个软故障的置信度,依照置信度最大准则判断是何故障发生。本方法可以诊断已知软故障,还可以检测未知软故障,适用于较为复杂的模拟电路软故障诊断环境。根据本发明方法编制的程序(编译环境LabVIEW,C++等)可以在监控计算机上运行,并联合传感器、数据采集器等硬件组成在线监测系统,进行实时的模拟电路软故障的检测与诊断。
-
公开(公告)号:CN102096410B
公开(公告)日:2012-06-20
申请号:CN201010605560.1
申请日:2010-12-24
Applicant: 清华大学 , 北京全路通信信号研究设计院
IPC: G05B23/00
Abstract: 本发明涉及一种高速列车运行控制系统功能的动态测试方法,属于高速列车运行控制系统技术领域。本方法首先根据高速列车运行控制系统功能规范基于参数化自动机模型构造被测高速列车运行控制系统的动态测试模型;然后依据该模型对被测高速列车运行控制系统执行动态测试过程。动态测试方法是一个由“生成待测转移的测试序列”、“执行测试序列”、“测试结果分析”、“动态测试模型参数更新”四个步骤组成的循环过程。本发明方法避免了在高速列车运行控制系统测试执行之前生成一个固定测试序列集,解决了传统静态测试方法测试覆盖率低和测试结果准确率低以及传统动态测试方法测试序列生成代价和执行代价大的问题。
-
公开(公告)号:CN102436524A
公开(公告)日:2012-05-02
申请号:CN201110319433.X
申请日:2011-10-19
Applicant: 清华大学 , 北京全路通信信号研究设计院
Abstract: 本发明涉及一种模拟电路软故障的诊断方法,属于模拟电路故障诊断技术领域。本方法首先构造软故障诊断的模糊规则,当软故障特征参数的在线监测值选中软故障诊断的模糊规则后,将被选中模糊规则前项的归一化置信度推理到后项,得到对模糊规则后项的归一化置信度。然后,对后项的置信度进行加权处理,得到对模拟电路软故障集合中每个软故障的置信度,依照置信度最大准则判断是何故障发生。本方法可以诊断已知软故障,还可以检测未知软故障,适用于较为复杂的模拟电路软故障诊断环境。根据本发明方法编制的程序(编译环境LabVIEW,C++等)可以在监控计算机上运行,并联合传感器、数据采集器等硬件组成在线监测系统,进行实时的模拟电路软故障的检测与诊断。
-
公开(公告)号:CN119322976A
公开(公告)日:2025-01-17
申请号:CN202411338153.7
申请日:2024-09-24
Applicant: 清华大学
IPC: G06F18/2411 , G01R31/00 , G01D21/02 , G01M13/00 , G06F18/214 , G06N3/0464
Abstract: 本公开涉及机电系统的异常检测技术领域,尤其涉及一种基于领域自适应因果解耦网络的复杂机电系统异常检测方法及装置。所述方法包括:获取机电系统的训练数据集和因果信息,训练数据集包括系统监测数据和对应的系统故障标签数据,因果信息用于指示机电系统的多个部件之间的作用关系;根据训练数据集和因果信息,训练得到基于领域自适应因果解耦网络的异常检测模型,领域自适应因果解耦网络用于指示系统监测数据与部件级健康状态表征之间的对应关系,异常检测模型用于对机电系统进行异常检测。本公开实施例通过结合领域自适应和因果解耦技术,训练得到领域自适应的异常检测模型,使得模型能够适应变化的系统运行环境。
-
公开(公告)号:CN118673846A
公开(公告)日:2024-09-20
申请号:CN202310259898.3
申请日:2023-03-13
Applicant: 国家高速列车青岛技术创新中心 , 清华大学
Abstract: 本公开涉及一种电路仿真方法及装置、电子设备和存储介质,所述方法包括:在第一仿真过程中,将第一电路中的各个动态元件等效为并联的电阻和电流源,并获取每个动态元件的第一等效电流源值,第一等效电流源值表示动态元件的等效电流源的电流值;将第一电路切割为多个子电路;确定每个子电路的电压向量;根据每个子电路的电压向量,确定每个动态元件两端的电压;针对任意一个动态元件,根据动态元件两端的电压,对动态元件的第一等效电流源值进行更新,得到动态元件的第二等效电流源值,重复第一仿真过程,直至满足仿真结束条件。本公开实施例可以对非线性时变电力系统进行分网并行仿真,节省了算力资源,保证了仿真精度,提高了电路的仿真速度。
-
-
-
-
-
-
-
-
-