-
公开(公告)号:CN109658252A
公开(公告)日:2019-04-19
申请号:CN201811515948.5
申请日:2018-12-12
Applicant: 暨南大学
Abstract: 本发明公开基于主成分分析法预测收益的方法、装置、设备及介质,该方法包括:获取股票市场中的控制面变量,所述控制面变量包括宏观经济变量和原始变量;基于主成分分析法对控制面变量进行处理并获取情绪综合指标ISI;利用情绪综合指标ISI构建预测市场收益的回归模型,并基于回归模型预测市场收益;所述市场收益包括短期市场收益和长期市场收益。本发明填补现有中尚缺少采用主成分分析法并基于投资者情绪对市场收益进行预测的技术方案的空白。
-
公开(公告)号:CN118503806A
公开(公告)日:2024-08-16
申请号:CN202410720765.6
申请日:2024-06-05
Applicant: 暨南大学
IPC: G06F18/2411 , G06F18/24 , G06F18/2413
Abstract: 本申请涉及基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质,该方法包括:获取待排序的订单数据,对订单数据进行预处理,以生成预设数据格式的候选订单数据,候选订单数据包括多种目标指标参数;利用TOPSIS法,处理多种目标指标参数,得到每个目标指标参数所对应的权重数据;对多种目标指标参数和每个目标指标参数对应的权重数据,利用秩和比评价法RSR进行秩和比计算,得到与每个目标指标参数对应的实时加权秩和比,将实时加权秩和比输入SVR模型,输出与实时加权秩和比对应的预测加权秩和比;根据预测加权秩和比和预设的分档规则,确定每个订单数据所对应的分档排序结果。通过本申请,解决相关技术中评级订单的方法效率及准确率低的问题。
-
公开(公告)号:CN118428652A
公开(公告)日:2024-08-02
申请号:CN202410501296.9
申请日:2024-04-25
Applicant: 暨南大学
IPC: G06Q10/0631 , G06Q10/0835 , G06Q10/083 , G06Q10/087 , G06Q50/04
Abstract: 本申请涉及面向生产与运输的智能联动决策方法及服务平台,该方法包括:将更新生成的生产变量期望值和配送变量期望值分别下发至生产规划子系统和输送规划子系统;接收生产规划子系统响应于生产变量期望值所返回的生产变量返回值和输送规划子系统响应于配送变量期望值所返回的配送变量返回值,并判断生产变量返回值和配送变量返回值是否满足预设的产运一致性约束;在判断到生产变量返回值和配送变量返回值不满足预设的产运一致性约束的情况下,重复执行利用预设的协同优化CO算法和动态容差进行协同优化,直至新的生产变量返回值和配送变量返回值满足产运一致性约束,得到联动决策结果。
-
公开(公告)号:CN117172641A
公开(公告)日:2023-12-05
申请号:CN202311328245.2
申请日:2023-10-13
Applicant: 暨南大学 , 超讯通信股份有限公司 , 广东康利达物联科技有限公司
IPC: G06Q10/083 , G16Y10/40 , G06Q10/0631 , H04L67/12 , H04L67/104
Abstract: 本申请涉及基于区块链与数字孪生的生产物流管理平台及实现方法,包括广域物理资源层和广域物理资源管理系统;广域物理资源管理系统包括区块链资源管理层、数字孪生映像层、可信智能联动服务层和可信智能联动应用层;广域物理资源层用于管理物理资源和智能IoT设备;区块链资源管理层用于构建基于区块链的生产物流资源管理器;数字孪生映像层在虚拟空间中进行等效数字化;可信智能联动服务层用于提供区块链资源可信度评估、系统优化配置、运作计划和状态监控以及可信追溯服务;可信智能联动应用层用于提供全流程资源配置和动态决策服务。通过本申请,解决了社会化生产物流资源管理中,易造成的信息可信程度弱且运作成本高及可靠性低的问题。
-
公开(公告)号:CN110458737B
公开(公告)日:2023-09-26
申请号:CN201910766856.2
申请日:2019-08-20
Applicant: 暨南大学
Abstract: 本发明公开基于神经网络修改高校教务安排的方法、装置、设备及介质,该方法包括:根据用户上传的教务安排约束条件生成教务安排误差计算公式;根据教务安排约束条件和/或根据教务安排误差计算公式计算出的教务安排表的误差训练CPPN神经网络;利用CPPN神经网络计算出教务安排表,并通过教务安排误差计算公式计算出教务安排表的误差;在误差不大于误差阈值的情况下,获取该误差对应的教务安排表。本发明的方法不再需要繁琐的修改过程,让教职工和教务处能够很大程度上地节省修改方案的流程,快速完成排课排考的建议提交和修改过程,提高教务处的办事效率。
-
公开(公告)号:CN110989945A
公开(公告)日:2020-04-10
申请号:CN201911211473.5
申请日:2019-12-02
Applicant: 暨南大学
Abstract: 本发明公开基于物联网的3D远程打印控制系统及控制方法,该控制系统包括远程控制终端、云服务平台和3D打印机;远程控制终端装载有APP,远程控制终端能通过网络连接云服务平台,云服务平台通过网络连接3D打印机和连接数据库;远程控制终端能通过登录APP访问和连接云服务平台及将待打印3D模型文件加密后传送至云服务平台,远程控制终端能通过云服务平台远程控制3D打印机打印和实时查询3D打印机的打印状态信息;云服务平台能在验证远程控制终端身份后,加密和/或解密由远程控制终端传送的加密的3D模型文件并传送至数据库或3D打印机;3D打印机能下载并打印由云服务平台传送的3D模型文件,和反馈3D打印机的打印状态信息。
-
公开(公告)号:CN110033239A
公开(公告)日:2019-07-19
申请号:CN201910301784.4
申请日:2019-04-16
Applicant: 暨南大学
Abstract: 本发明公开基于贪婪算法的排考方法、装置、设备及介质,该排考方法包括:根据获取的高校教务系统中的考试任务集之教室信息集确定每一待排考的考试任务所需监考教师的总人数;利用贪婪算法,对从高校教务系统中获取的监考教师信息集中的所有监考教师逐个遍历并选出依次满足贪婪规则的监考教师,贪婪规则依次为:选取的监考教师的排考中不包含当前考试任务、与当前考试任务不冲突、监考教师的选取满足教师群体选择规律、选取的监考教师排考任务数最少;监考教师信息集包括监考教师姓名和教师群体编号;对每一考试任务分配匹配人数的选出的监考教师。本发明能解决现有中通过手工排考导致的人力/物力/资源浪费严重、执行环节间运作不协调问题。
-
公开(公告)号:CN118674491B
公开(公告)日:2025-02-28
申请号:CN202410842824.7
申请日:2024-06-27
Applicant: 暨南大学
IPC: G06Q30/0202 , G06N3/0464 , G06N3/049 , G06N3/0442 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本申请涉及基于大数据的产品需求信息预测方法、装置、预测平台及介质,该方法包括:在目标产品对应的历史生产数据中,获取与所述目标产品对应的第一生产数据时间序列,并按预设规则对所述第一生产数据时间序列进行缩放处理,生成第二生产数据时间序列;将所述第二生产数据时间序列,输入已训备的需求预测模型,得到所述目标产品对应的目标需求预测数据;利用已构建的EM‑GMM模型,处理所述目标需求预测数据的所有所述日生产需求预测数据,生成生产需求预测结果,其中,所述生产需求预测结果包括所述目标产品对应的周生产需求概率分布参数,通过使用TCN‑LSTM模型,结合网格搜索法,对历史生产数据进行预处理和预测,从而提高对目标产品需求预测的准确性。
-
公开(公告)号:CN118485358B
公开(公告)日:2025-02-07
申请号:CN202410669998.8
申请日:2024-05-28
Applicant: 暨南大学 , 超讯通信股份有限公司 , 广东康利达物联科技有限公司
IPC: G06Q10/08 , G06Q10/0631 , G06Q10/04 , G06N3/126
Abstract: 本申请涉及基于改进教与学算法的分布式区块链生产物流资源的优化配置方法,包括:从预设的多个区块链资源集合对应的生产物流资源BCPLR节点中,选取每个区块链资源集合对应的候选BCPLR节点集;基于多个候选BCPLR节点集和生产物流任务量,进行种群个体编码和种群初始化,生成多个第一个体编码;利用改进的教与学算法TLBO,对多个第一个体编码进行种群搜索迭代,生成多个第二个体编码,并基于第二个体编码对应的资源配置方式的适应度和改进的TLBO,对多个第二个体编码进行种群更新迭代,并从生成的多个备选个体编码中,确定目标个体编码,得到优化配置结果,其中,改进的TLBO是将多教师分组的教学策略和结合随机性和有向性的交叉学习策略分别作为TLBO的教学策略和学习策略的TIBO。
-
公开(公告)号:CN118503806B
公开(公告)日:2024-11-12
申请号:CN202410720765.6
申请日:2024-06-05
Applicant: 暨南大学
IPC: G06F18/2411 , G06F18/24 , G06F18/2413
Abstract: 本申请涉及基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质,该方法包括:获取待排序的订单数据,对订单数据进行预处理,以生成预设数据格式的候选订单数据,候选订单数据包括多种目标指标参数;利用TOPSIS法,处理多种目标指标参数,得到每个目标指标参数所对应的权重数据;对多种目标指标参数和每个目标指标参数对应的权重数据,利用秩和比评价法RSR进行秩和比计算,得到与每个目标指标参数对应的实时加权秩和比,将实时加权秩和比输入SVR模型,输出与实时加权秩和比对应的预测加权秩和比;根据预测加权秩和比和预设的分档规则,确定每个订单数据所对应的分档排序结果。通过本申请,解决相关技术中评级订单的方法效率及准确率低的问题。
-
-
-
-
-
-
-
-
-