-
公开(公告)号:CN118428652B
公开(公告)日:2024-11-08
申请号:CN202410501296.9
申请日:2024-04-25
Applicant: 暨南大学
IPC: G06Q10/0631 , G06Q10/0835 , G06Q10/083 , G06Q10/087 , G06Q50/04
Abstract: 本申请涉及面向生产与运输的智能联动决策方法及服务平台,该方法包括:将更新生成的生产变量期望值和配送变量期望值分别下发至生产规划子系统和输送规划子系统;接收生产规划子系统响应于生产变量期望值所返回的生产变量返回值和输送规划子系统响应于配送变量期望值所返回的配送变量返回值,并判断生产变量返回值和配送变量返回值是否满足预设的产运一致性约束;在判断到生产变量返回值和配送变量返回值不满足预设的产运一致性约束的情况下,重复执行利用预设的协同优化CO算法和动态容差进行协同优化,直至新的生产变量返回值和配送变量返回值满足产运一致性约束,得到联动决策结果。
-
公开(公告)号:CN118278693B
公开(公告)日:2024-11-01
申请号:CN202410466365.7
申请日:2024-04-18
Applicant: 暨南大学
IPC: G06Q10/0631 , G06F18/2411 , G06N3/0442 , G06N3/126 , G06Q30/0202 , G06Q50/04
Abstract: 本申请涉及基于工业大数据的间歇式生产系统经济批量决策方法、服务平台及介质,该方法包括:获取当前所接收到的需求订单信息;根据预设的支持向量机SVM多分类模型,对所述当前产品生产信息进行处理,确定产品类型;将已确定产品类型的所述当前产品生产信息,输入预设的需求时序预测模型,得到第一产品需求预测信息;在将所述第一产品需求预测信息导入与所述产品类型对应的经济生产批量决策模型之后,利用预设的遗传算法和迭代规则,计算出经济生产批量结果,通过引入大数据分析技术确定决策模型中的关键变量,增强模型求解的精准性,提升复杂随机环境下生产物流系统多层次、多尺度管控决策的智能化水平。
-
公开(公告)号:CN118428851B
公开(公告)日:2024-10-15
申请号:CN202410501297.3
申请日:2024-04-25
Applicant: 暨南大学
IPC: G06Q10/087 , G06Q10/0631 , G06Q10/0835 , G06Q10/083 , G06Q50/04
Abstract: 本申请涉及基于订单批处理的生产与仓储智能联动决策方法及服务平台,该方法包括:获取预规划的排产信息和当前预规划的仓储信息,排产信息关联对应的生产总成本和生产下线时间序列,仓储信息关联对应的仓储总成本和排库时间序列;对生产总成本、生产下线时间序列、仓储总成本和排库时间序列,利用改进的协同优化算法和动态容差进行协同优化,以更新当前生产耦合变量期望值和当前排库耦合变量期望值;判断完成当次迭代的候选排产信息所对应的生产下线时间序列和候选仓储信息所对应的排库时间序列是否满足预设的一致性约束,并在判断到满足预设的一致性约束时,将对应的候选排产信息和对应的候选仓储信息作为协同规划结果。
-
公开(公告)号:CN118229194A
公开(公告)日:2024-06-21
申请号:CN202410437940.0
申请日:2024-04-12
Applicant: 暨南大学
IPC: G06Q10/087 , G06Q50/04
Abstract: 本申请涉及批生产模式下的库位规划方法、电子装置及存储介质,该方法包括:获取当前空闲的货位信息和组批生产后的多个生产订单信息,每个生产订单信息包括多个目标对象对应的同一类别的单品信息;从多个生产订单信息中,获取每个目标对象对应的多个单品信息,得到每个目标对象对应的多个入库子单信息,并基于货位信息和入库子单信息,进行初始编码,得到第一编码序列;利用ALNS算法和预设的仓储约束,对当前编码序列进行破坏修复操作,生成备选编码序列;根据备选编码序列和当前编码序列对应的仓储成本,从备选编码序列和当前编码序列中,选取目标编码序列,得到库位规划结果。通过本申请,解决相关技术的库位规划方案易浪费仓库资源及成本的问题。
-
公开(公告)号:CN118278693A
公开(公告)日:2024-07-02
申请号:CN202410466365.7
申请日:2024-04-18
Applicant: 暨南大学
IPC: G06Q10/0631 , G06F18/2411 , G06N3/0442 , G06N3/126 , G06Q30/0202 , G06Q50/04
Abstract: 本申请涉及基于工业大数据的间歇式生产系统经济批量决策方法、服务平台及介质,该方法包括:获取当前所接收到的需求订单信息;根据预设的支持向量机SVM多分类模型,对所述当前产品生产信息进行处理,确定产品类型;将已确定产品类型的所述当前产品生产信息,输入预设的需求时序预测模型,得到第一产品需求预测信息;在将所述第一产品需求预测信息导入与所述产品类型对应的经济生产批量决策模型之后,利用预设的遗传算法和迭代规则,计算出经济生产批量结果,通过引入大数据分析技术确定决策模型中的关键变量,增强模型求解的精准性,提升复杂随机环境下生产物流系统多层次、多尺度管控决策的智能化水平。
-
公开(公告)号:CN118503806A
公开(公告)日:2024-08-16
申请号:CN202410720765.6
申请日:2024-06-05
Applicant: 暨南大学
IPC: G06F18/2411 , G06F18/24 , G06F18/2413
Abstract: 本申请涉及基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质,该方法包括:获取待排序的订单数据,对订单数据进行预处理,以生成预设数据格式的候选订单数据,候选订单数据包括多种目标指标参数;利用TOPSIS法,处理多种目标指标参数,得到每个目标指标参数所对应的权重数据;对多种目标指标参数和每个目标指标参数对应的权重数据,利用秩和比评价法RSR进行秩和比计算,得到与每个目标指标参数对应的实时加权秩和比,将实时加权秩和比输入SVR模型,输出与实时加权秩和比对应的预测加权秩和比;根据预测加权秩和比和预设的分档规则,确定每个订单数据所对应的分档排序结果。通过本申请,解决相关技术中评级订单的方法效率及准确率低的问题。
-
公开(公告)号:CN118428652A
公开(公告)日:2024-08-02
申请号:CN202410501296.9
申请日:2024-04-25
Applicant: 暨南大学
IPC: G06Q10/0631 , G06Q10/0835 , G06Q10/083 , G06Q10/087 , G06Q50/04
Abstract: 本申请涉及面向生产与运输的智能联动决策方法及服务平台,该方法包括:将更新生成的生产变量期望值和配送变量期望值分别下发至生产规划子系统和输送规划子系统;接收生产规划子系统响应于生产变量期望值所返回的生产变量返回值和输送规划子系统响应于配送变量期望值所返回的配送变量返回值,并判断生产变量返回值和配送变量返回值是否满足预设的产运一致性约束;在判断到生产变量返回值和配送变量返回值不满足预设的产运一致性约束的情况下,重复执行利用预设的协同优化CO算法和动态容差进行协同优化,直至新的生产变量返回值和配送变量返回值满足产运一致性约束,得到联动决策结果。
-
公开(公告)号:CN118674491B
公开(公告)日:2025-02-28
申请号:CN202410842824.7
申请日:2024-06-27
Applicant: 暨南大学
IPC: G06Q30/0202 , G06N3/0464 , G06N3/049 , G06N3/0442 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本申请涉及基于大数据的产品需求信息预测方法、装置、预测平台及介质,该方法包括:在目标产品对应的历史生产数据中,获取与所述目标产品对应的第一生产数据时间序列,并按预设规则对所述第一生产数据时间序列进行缩放处理,生成第二生产数据时间序列;将所述第二生产数据时间序列,输入已训备的需求预测模型,得到所述目标产品对应的目标需求预测数据;利用已构建的EM‑GMM模型,处理所述目标需求预测数据的所有所述日生产需求预测数据,生成生产需求预测结果,其中,所述生产需求预测结果包括所述目标产品对应的周生产需求概率分布参数,通过使用TCN‑LSTM模型,结合网格搜索法,对历史生产数据进行预处理和预测,从而提高对目标产品需求预测的准确性。
-
公开(公告)号:CN118503806B
公开(公告)日:2024-11-12
申请号:CN202410720765.6
申请日:2024-06-05
Applicant: 暨南大学
IPC: G06F18/2411 , G06F18/24 , G06F18/2413
Abstract: 本申请涉及基于TOPSIS和SVR的订单评级方法、装置、评级系统及存储介质,该方法包括:获取待排序的订单数据,对订单数据进行预处理,以生成预设数据格式的候选订单数据,候选订单数据包括多种目标指标参数;利用TOPSIS法,处理多种目标指标参数,得到每个目标指标参数所对应的权重数据;对多种目标指标参数和每个目标指标参数对应的权重数据,利用秩和比评价法RSR进行秩和比计算,得到与每个目标指标参数对应的实时加权秩和比,将实时加权秩和比输入SVR模型,输出与实时加权秩和比对应的预测加权秩和比;根据预测加权秩和比和预设的分档规则,确定每个订单数据所对应的分档排序结果。通过本申请,解决相关技术中评级订单的方法效率及准确率低的问题。
-
公开(公告)号:CN118674491A
公开(公告)日:2024-09-20
申请号:CN202410842824.7
申请日:2024-06-27
Applicant: 暨南大学
IPC: G06Q30/0202 , G06N3/0464 , G06N3/049 , G06N3/0442 , G06N3/045 , G06N3/048 , G06N3/084
Abstract: 本申请涉及基于大数据的产品需求信息预测方法、装置、预测平台及介质,该方法包括:在目标产品对应的历史生产数据中,获取与所述目标产品对应的第一生产数据时间序列,并按预设规则对所述第一生产数据时间序列进行缩放处理,生成第二生产数据时间序列;将所述第二生产数据时间序列,输入已训备的需求预测模型,得到所述目标产品对应的目标需求预测数据;利用已构建的EM‑GMM模型,处理所述目标需求预测数据的所有所述日生产需求预测数据,生成生产需求预测结果,其中,所述生产需求预测结果包括所述目标产品对应的周生产需求概率分布参数,通过使用TCN‑LSTM模型,结合网格搜索法,对历史生产数据进行预处理和预测,从而提高对目标产品需求预测的准确性。
-
-
-
-
-
-
-
-
-