训练用于表征知识图谱的图神经网络模型的方法及装置

    公开(公告)号:CN110866190A

    公开(公告)日:2020-03-06

    申请号:CN201911127100.X

    申请日:2019-11-18

    Abstract: 本说明书实施例提供一种训练用于表征知识图谱的图神经网络模型的方法和装置,其中方法包括,从知识图谱中获取三元组,其中包括第一节点,第二节点,以及从第一节点指向第二节点的第一连接边;然后,在边嵌入层,根据第一连接边对应的关系类型以及边属性特征,确定对应的第一边向量;在节点嵌入层,分别将第一节点和第二节点作为目标节点,根据目标节点的节点属性特征,以及目标节点的邻居节点集,进行多级向量嵌入,从而分别得到与第一节点和第二节点对应的第一高阶向量和第二高阶向量。接着,根据第一高阶向量、第二高阶向量和第一边向量,确定第一节点通过第一连接边连接到第二节点的概率,以最大化概率为目标,更新边嵌入层和节点嵌入层。

    图解耦表征模型训练、图解耦表征和对象推荐方法及装置

    公开(公告)号:CN118036722A

    公开(公告)日:2024-05-14

    申请号:CN202410232555.2

    申请日:2024-02-29

    Abstract: 本说明书实施例提供图解耦表征模型训练、图解耦表征和对象推荐方法及装置。在模型训练时,经由图表征生成层生成对象关系图中的对象节点的初始节点表征;经由特征解耦层基于对象节点的初始节点表征从样本对象节点的对象特征中解耦出有效特征和冗余特征,以及经由结构解耦层基于对象节点的初始节点表征将对象关系图解耦为有效结构图和冗余结构图。随后,经由图表征学习层,基于有效结构图对样本对象节点的有效特征进行图学习得到样本对象节点的有效表征。然后,执行模型训练任务来进行图解耦表征模型的模型更新。所执行的模型训练任务至少包括基于样本对象节点的有效表征的下游预测学习任务。

    基于大语言模型的知识挖掘方法和装置

    公开(公告)号:CN117725113A

    公开(公告)日:2024-03-19

    申请号:CN202311654784.5

    申请日:2023-12-05

    Abstract: 本说明书的实施例提供了一种基于大语言模型的知识挖掘方法和装置。在该基于大语言模型的知识挖掘方法中,根据预定实体图谱,获取针对源实体的结构化知识;根据该源实体在该预定实体图谱中的目标属性确定候选关系集;利用大语言模型根据该结构化知识、该候选关系集和针对该源实体的附加知识,输出对应的目标关系集和可继承知识,其中,该可继承知识包括该目标关系集中的关系所对应的至少一个目标实体词;再利用大语言模型基于该源实体、该目标关系集中的关系和结构化知识、附加知识、可继承知识中的至少一项构建的提示信息,输出与所提供的关系对应的候选实体词集;进而,得到与该源实体相关联的实体和相应关系。

    基于关系网络的模型训练方法、表征确定方法及装置

    公开(公告)号:CN115936057A

    公开(公告)日:2023-04-07

    申请号:CN202211538942.6

    申请日:2022-12-02

    Abstract: 本说明书实施例提供了一种基于关系网络的模型训练方法、表征确定方法及装置。其中通过注意力模型对用户节点的邻居用户节点进行选择,从而利用选择的邻居用户节点确定关系网络的选择邻接矩阵。接着,通过图神经网络,基于选择邻接矩阵将邻居节点表征向对应的用户节点传播,得到用户聚合表征;利用用户聚合表征和物表征之间的相似度拟合用户与物之间的点击行为,从而与已有点击行为之间的差异构建预测损失,并更新注意力模型。训练后的注意力模型能够选择出更可信的邻居用户。之后,利用注意力模型对用户和商品进行多路径的表征聚合,并利用自监督训练多表征聚合模型,得到最终的用户表征和商品表征,进而利用其相似度拟合用户对商品的点击概率。

    确定用户的业务属性的方法及装置

    公开(公告)号:CN111581450A

    公开(公告)日:2020-08-25

    申请号:CN202010588745.X

    申请日:2020-06-24

    Abstract: 本说明书实施例提供一种确定用户的业务属性的方法,一方面,基于异构图确定用户的预测向量,将各个关联关系下获取的用户的表达向量融合,综合了各种可能的信息,从多维度丰富用户信息,利用信息互补性探索多重关系下的丰富语义,从而避免单一信息缺失无法准确描述用户导致的无法预测用户业务属性的情形;另一方面,在单个关联关系下确定用户的表达向量过程中,不仅考虑用户与其他用户之间的关联影响,而且还考虑连接边对应的业务属性对这种关联关系的影响,充分利用用户的局部结构信息来增强对用户的表示能力,从而提高对用户业务属性预测的准确度。

    基于异构图进行业务处理的方法及装置

    公开(公告)号:CN111309983A

    公开(公告)日:2020-06-19

    申请号:CN202010162991.9

    申请日:2020-03-10

    Abstract: 本说明书实施例提供一种基于异构图进行业务处理的方法和装置,可以利用不同结构的关系网络构成的异构图直接进行业务处理。在本说明书的实施架构下,利用多个不同连接关系类型的关系网络,可以更加全面的刻画实体的特征,另一方面,针对各个关系网络分别处理得到节点的各个业务表征向量,无需对各个关系网络进行综合,可以避免繁琐的手工特征抽取,进一步地,可以自动确定在当前业务下,当前实体在每个关系网络中的重要度系数(权重),实现在各个关系网络下的信息融合,从而使得对当前实体的评估结果更加准确。

    序列推荐方法和装置
    19.
    发明公开

    公开(公告)号:CN117909592A

    公开(公告)日:2024-04-19

    申请号:CN202410124852.5

    申请日:2024-01-29

    Abstract: 本说明书实施例提供一种序列推荐方法和装置。方法包括:获取目标用户的历史交互的各个对象按照时间先后顺序构成的历史对象序列;根据历史对象序列,构建目标提示信息;用于提示向所述目标用户推荐目标对象及其理由;将目标提示信息输入第一语言模型,通过第一语言模型输出目标推荐理由;基于目标推荐理由的文本编码向量,确定目标用户的用户表征;基于对象集合中的任一待推荐对象的文本编码向量,确定该待推荐对象的对象表征;将用户表征和对象集合中的任一待推荐对象的对象表征输入匹配模型,得到二者的匹配分数,并根据匹配分数,从对象集合中选择一个待推荐对象作为向目标用户推荐的目标对象。能够提升推荐的准确性。

    推荐模型的训练方法、推荐方法及电子设备

    公开(公告)号:CN117370663A

    公开(公告)日:2024-01-09

    申请号:CN202311369866.5

    申请日:2023-10-20

    Abstract: 本说明书的实施例提供一种推荐模型的训练方法、推荐方法及电子设备,其中,所述训练方法包括:获得多个初始样本,每个所述初始样本包括样本用户按照时间顺序先后交互的多个项目;基于所述多个初始样本从至少两个对比维度构建得到对比样本集合,其中,所述至少两个对比维度包括:项目相关性对比维度和序列周期性对比维度;进而,从所述至少两个对比维度对所述多个初始样本和所述对比样本集合进行对比学习以得到所述推荐模型,所述推荐模型具有捕获用户交互行为的发散周期性的能力。

Patent Agency Ranking