-
公开(公告)号:CN114043026A
公开(公告)日:2022-02-15
申请号:CN202111340811.2
申请日:2021-11-12
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
IPC: B23K1/008 , B23K1/20 , B23K103/18
Abstract: 本发明提供了一种陶瓷‑金属中的应力缓解方法,涉及材料焊接技术领域,包括:在多孔陶瓷母材待焊面涂覆软质钎料,使所述软质钎料填充到所述多孔陶瓷母材待焊面的空隙内部,得到填充所述软质钎料的改性多孔陶瓷母材;将硬质钎料涂覆在处理后的金属母材表面,按照所述金属母材、所述硬质钎料、所述改性多孔陶瓷母材的顺序依次放置,用模具夹紧,并送入真空炉中进行热处理后,完成陶瓷‑金属的连接。本发明通过两步法,实现对软质钎料和硬质钎料的分布有效控制,以同时保证陶瓷‑金属接头的耐温性以及应力释放的问题。
-
公开(公告)号:CN115156547B
公开(公告)日:2024-11-29
申请号:CN202210526683.9
申请日:2022-05-16
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
Abstract: 本发明提供了一种银纳米线及其合成方法,属于新材料技术领域。所述方法包括:以多元醇为溶剂,分别配置硝酸银溶液和硝酸铁溶液;将所述硝酸银溶液、所述硝酸铁溶液加入所述溶剂中混合均匀,得到反应溶液,其中,所述反应溶液中硝酸银的浓度为5mM‑100mM,所述反应溶液中硝酸铁的浓度为3mM‑160mM;将所述反应溶液在70℃‑160℃下保温7min‑50h,得到含银纳米线的母液;对所述母液进行分离得到银纳米线。本发明在不使用任何表面活性剂和阴离子形核剂的情况下,在高浓度铁离子辅助下,大大加快了银纳米线的形核和生长速度,并提高产量,降低合成温度,最终合成了具有高长径比的银纳米线,且一步合成、工艺简单。
-
公开(公告)号:CN114230342B
公开(公告)日:2022-12-20
申请号:CN202111415143.5
申请日:2021-11-25
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
IPC: C04B35/50 , C04B35/48 , C04B35/622 , H01M10/052 , H01M10/0562
Abstract: 本发明提供了一种稀土氧化物掺杂改性Ga‑LLZO固体电解质及其制备方法,涉及锂电池技术领域,所述稀土氧化物掺杂改性Ga‑LLZO固体电解质具有立方结构,且所述稀土氧化物掺杂改性Ga‑LLZO固体电解质的分子式为Li6.25+xGa0.25La3Zr2‑xMxO12,其中,M为稀土元素,且0≤x≤0.2。与现有技术比较,本发明基于固态电解质LLZO各个位点的掺杂效果,通过稀土氧化物掺杂的手段改性石榴石型Ga‑LLZO电解质以获取电导率高且质量高的LLZO固态电解质。
-
公开(公告)号:CN114182125A
公开(公告)日:2022-03-15
申请号:CN202111429690.9
申请日:2021-11-29
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
Abstract: 本发明提供了一种梯度合金复合材料及其制备方法,涉及复合材料制备技术领域,所述制备方法包括:在惰性气氛下将碳化物陶瓷粉体和AgCu28共晶粉体球磨混合,得到多个具有不同成分含量的混合粉体;将所述混合粉体和钛合金粉末球磨混合并干燥后,得到多个具有不同成分含量的母粉,且多个所述母粉中钛合金粉末的含量呈梯度递增或递减;将所述多个具有不同成分含量的母粉按照预设顺序依次加入到模具中进行预压成型处理,得到预成型产物;将所述预成型产物在真空或者惰性气氛下进行放电等离子体烧结,得到具有层状结构的梯度合金复合材料。与现有技术比较,本发明能够获得致密度且力学性能优异的梯度合金复合材料。
-
公开(公告)号:CN117984628A
公开(公告)日:2024-05-07
申请号:CN202410124432.7
申请日:2024-01-29
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
IPC: B32B15/20 , B32B9/04 , B32B37/06 , B32B37/08 , B32B38/00 , B32B15/04 , B32B37/10 , H01L23/15 , H01L23/373 , H05K5/02
Abstract: 本发明涉及陶瓷材料技术领域,提供了一种高可靠性氮化铝陶瓷覆铝陶瓷基板及其制备方法和应用。本发明在氮化铝陶瓷与铝之间加入铝合金,在压力为0.1‑0.3Mpa,焊接温度为580℃‑620℃,保温时间30min的工艺参数下,实现了氮化铝陶瓷与铝的高性能键合,所获得的陶瓷基板可靠性高,经测试,陶瓷基板强度在60MPa以上。并且,本发明的焊接温度较低,在580℃至620℃的低温范围下实现了氮化铝与铝箔的有效键合,且精度较高,符合绿色节能的生产原则。此外,本发明直接将表面处理后的氮化铝陶瓷、铝合金和铝箔三层叠放好后进行热压即可,不需要对氮化铝陶瓷表面进行改性,工艺简单、成本可控,能够实现大规模批量生产。
-
公开(公告)号:CN114043027B
公开(公告)日:2024-01-12
申请号:CN202111340814.6
申请日:2021-11-12
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
IPC: B23K1/008 , B23K1/20 , B23K103/18
Abstract: 本发明提供了一种熔浸法烧结焊接方法,涉及材料焊接技术领域,所述熔浸法烧结焊接方法包括将低熔点钎料和高熔点钎料分别球磨后,分别与粘接剂混合,得到低熔点膏状钎料和高熔点膏状钎料;将低熔点膏状钎料涂覆在第一母材的待焊面,将高熔点膏状钎料涂覆在第二母材的待焊面;按照第一母材、低熔点膏状钎料、高熔点膏状钎料、第二母材的顺序依次将第一母材和第二母材置于模具中,并于真空炉中加热至钎焊温度使低熔点膏状钎料熔化,并发生熔浸后降温至室温,完成焊接,且发生熔浸后,高熔点膏状钎料的体积大于熔化后的低熔点膏状钎料的体积。与现有技术比较,本发明能够实现低温焊接高温使用,并获得具有一定室温、高温剪切强度的钎焊
-
公开(公告)号:CN116786967A
公开(公告)日:2023-09-22
申请号:CN202310815229.X
申请日:2023-07-05
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
Abstract: 本发明涉及焊接技术领域,具体而言,涉及一种镍基高温合金的低温快速连接方法,该连接方法包括:步骤S1、对基体材料进行预处理,得到预处理基体;步骤S2、在所述预处理基体的待焊接面上电镀纳米晶镍层,得到中间待焊接基体;步骤S3、将所述中间待焊接基体的纳米晶镍层相互叠合对接在一起,进行脉冲电流辅助扩散连接,得到镍基高温合金焊接接头。采用本发明提供的方法,能够实现镍基高温合金低温、快速、高精度连接。
-
公开(公告)号:CN114310037A
公开(公告)日:2022-04-12
申请号:CN202210098178.9
申请日:2022-01-27
Applicant: 哈尔滨工业大学 , 哈尔滨邦定科技有限责任公司
Abstract: 本发明提供了一种NiCrFeCuZrHf钎料及其制备方法,涉及材料焊接技术领域,NiCrFeCuZrHf钎料为高熵钎料,且所述NiCrFeCuZrHf钎料的成分及原子百分比包括:Ni:5%‑15%,Cr:10%‑20%,Fe:10%‑20%,Cu:15%‑25%,Zr:10%‑20%,Hf:10%‑20%,Sn:0.5%‑5%,In:0.01%‑2%,Ga:0.01%‑2%。与现有技术比较,本发明NiCrFeCuZrHf钎料与TiAl合金、Ni基高温合金两种极异材料相容性均较好,钎料中硬脆相含量低,组织均匀,以固溶体为主,相应钎焊接头中金属间化合物含量少,尺寸小,弥散分布,钎焊接头强度高。
-
公开(公告)号:CN118893269A
公开(公告)日:2024-11-05
申请号:CN202411056095.9
申请日:2024-08-02
Applicant: 哈尔滨工业大学 , 哈尔滨工业大学重庆研究院
Abstract: 本发明提出了一种适用于电感器件引脚焊接的微波点胶系统及点胶方法,属于微波焊接技术领域。该适用于电感器件引脚焊接的微波点胶系统中,加热罐具有复合加热腔,微波加热组件用于对复合加热腔加热,加热罐的底部设有出料口,加热杆位于复合加热腔内,当加热杆处于伸出状态,加热杆的下端伸出至外界并封闭出料口;当加热杆处于缩回状态,加热杆缩回至复合加热腔并打开出料口;加料装置用于向复合加热腔内注入焊膏;行走装置用于带动微波焊接装置在三维方向上移动;供气装置用于向复合加热腔内注气;控制装置能控制微波焊接装置、加料装置、行走装置和供气装置。使用微波复合加热式钎焊技术,焊接效率高,焊接质量好,稳定性高,无污染。
-
公开(公告)号:CN111403180B
公开(公告)日:2022-03-22
申请号:CN202010119040.3
申请日:2020-02-26
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明属于电容器材料技术领域,具体涉及一种氢氧化镍/二硫化钴复合材料及其制备方法和应用。该氢氧化镍/二硫化钴复合材料的制备方法包括如下步骤:提供碳布,在所述碳布表面生长钴基金属有机骨架材料;将生长有所述钴基金属有机骨架材料的碳布置于含有硫源的醇溶液中,进行加热处理,在所述碳布表面生成二硫化钴纳米棒;随后在所述二硫化钴纳米棒表面沉积氢氧化镍,得到所述氢氧化镍/二硫化钴复合材料。该制备方法得到的氢氧化镍/二硫化钴复合材料具有很好的电化学性能和柔性,将其用作电极材料用于柔性超级电容器中,不仅具有较高的能量密度和长的循环性能,而且具有很好的柔性,因此,具有很好的应用价值。
-
-
-
-
-
-
-
-
-