高速公路超限预检系统
    11.
    发明公开

    公开(公告)号:CN101620787A

    公开(公告)日:2010-01-06

    申请号:CN200910072659.7

    申请日:2009-08-07

    Abstract: 本发明公开一种高速公路超限预检系统。对在高速公路上正常行驶的车辆的动态检测,将超载嫌疑车辆与非超载车辆分开,牌照识别系统及情报板引导超限嫌疑车辆从匝道驶入超限检测站进行检测;而非超限车辆正常行驶。极大减轻超限检测站逢车必检的压力,提高执法效率。本发明包括以下部分:轴重称、牌照识别系统、情报板和载荷识别软件,轴重称采用碳纤维增强树脂基复合材料加筋结构;牌照识别系统由轴重称触发,对驶入称上车辆进行牌照识别;情报板根据轴重称获得的车辆轴重参数及牌照识别系统获得到的牌号数据综引导车辆进入指定车道;载荷识别软件可以对驶入称体随机位置的车轮进行行驶参数识别与记录,对比相关车辆标准,对车辆是否发生超载作出判断。

    一种用于对撞机正电子产率优化的注入器结构

    公开(公告)号:CN116685043B

    公开(公告)日:2024-07-05

    申请号:CN202310361430.5

    申请日:2023-04-07

    Abstract: 本发明公开了一种用于对撞机正电子产率优化的注入器结构,包括射频电子枪、热电子枪、多段S波段电子直线加速器、中部电子直线加速器,还包括偏转结构、正电子源、正负电子分离器和正电子阻尼环,所述正负电子分离器和正电子阻尼环设于偏转结构内,所述注入器各个部件之间通过束流传输的真空管道连通,所述注入器末端设有增强器,第三S波段电子直线加速器与第二S波段电子直线加速器之间连接设有周转回路传输线,所述周转回路传输线的左端部连接设有正电子阻尼环。本发明与现有技术相比的优点在于:为了改善现存对撞机正电子系统灵活性不足及产率较低的问题,本发明提出了一种稳定高效、经济实用的用于对撞机正电子产率优化的注入器结构。

    一种用于对撞机正电子产率优化的注入器结构

    公开(公告)号:CN116685043A

    公开(公告)日:2023-09-01

    申请号:CN202310361430.5

    申请日:2023-04-07

    Abstract: 本发明公开了一种用于对撞机正电子产率优化的注入器结构,包括射频电子枪、热电子枪、多段S波段电子直线加速器、中部电子直线加速器,还包括偏转结构、正电子源、正负电子分离器和正电子阻尼环,所述正负电子分离器和正电子阻尼环设于偏转结构内,所述注入器各个部件之间通过束流传输的真空管道连通,所述注入器末端设有增强器,第三S波段电子直线加速器与第二S波段电子直线加速器之间连接设有周转回路传输线,所述周转回路传输线的左端部连接设有正电子阻尼环。本发明与现有技术相比的优点在于:为了改善现存对撞机正电子系统灵活性不足及产率较低的问题,本发明提出了一种稳定高效、经济实用的用于对撞机正电子产率优化的注入器结构。

    一种缝隙加载的多频印刷天线

    公开(公告)号:CN102664307A

    公开(公告)日:2012-09-12

    申请号:CN201210156003.5

    申请日:2012-05-18

    Abstract: 一种缝隙加载的多频印刷天线,它涉及一种多频印刷天线。本发明解决了传统的多频印刷天线具有尺寸大、结构复杂、谐振频率可控性差的缺点,限制了其在无线通信领域应用的问题。本发明的辐射单元和馈电结构由上至下印刷在介质板上,且辐射单元的底部镶嵌在馈电结构的顶端中部,馈电结构为共面波导馈电结构,辐射单元为倒三角形贴片,辐射单元的两腰上分别开有第一水平缝隙和第二水平缝隙,第一水平缝隙和第二水平缝隙上下并列设置,第一水平缝隙和第二水平缝隙距离馈电结构顶端的高度分别为h1=14.0mm-17.0mm和h2=9.0mm-13.0mm,第一水平缝隙和第二水平缝隙的宽度分别为w1=0.4mm-1.5mm和w2=0.5mm-2.0mm,第一水平缝隙和第二水平缝隙的长度分别为l1=9.0mm-14.0mm和l2=5.0mm-9.0mm。本发明可以应用于WLAN和WiMAX等通信系统中。

    基于应变测量的复合材料轴重称载荷识别方法

    公开(公告)号:CN101619999A

    公开(公告)日:2010-01-06

    申请号:CN200910072637.0

    申请日:2009-08-04

    Abstract: 本发明涉及一种轴重称载荷识别方法,通过对筋上应变的直接测量及其载荷识别算法,可以获得车辆的轴重、位置、轮距等特征信息。其特征为:一个轴重称由两块复合材料称体组成,两个称体对汽车车轮载荷的测量是同时进行的;每个称体通过三个应变传感器测量结构变形,三个传感器等间距布置,间距需大于载重汽车轮胎的轮辐宽度;通过应变测量结果反算载荷位置及大小,反算载荷大小是建立在简直梁力学模型基础上的,反算载荷位置是反算载荷大小的基础,判断出位置后,依据简直梁模型中,不同位置的计算公式,反算载荷。

Patent Agency Ranking