-
公开(公告)号:CN102980666A
公开(公告)日:2013-03-20
申请号:CN201210587761.2
申请日:2012-12-31
Applicant: 哈尔滨工业大学
Abstract: 高精度小型化红外光学系统,涉及一种具有小型化、高精度特点的中波红外光学系统。为了解决现有红外光学系统高精度、小型化、大视场之间的矛盾。本发明的红外光学系统从物面到像面依次同轴设置有整流罩(1)、光焦度为正的前透镜组(2)、光焦度为负的后透镜组(3)和红外成像探测器(4),采用远摄型折射一次成像的结构形式,合理分配前后透镜组的光焦度,使整个系统的长度缩小,视场增大,且采用小像元红外焦平面探测器,使系统的分辨率增高。本发明的高精度小型化红外光学系统具有分辨率高、视场大,体积小、结构简单的优点,具有很强的实用价值。
-
公开(公告)号:CN102749189A
公开(公告)日:2012-10-24
申请号:CN201210254546.0
申请日:2012-07-23
Applicant: 哈尔滨工业大学
IPC: G01M11/02
Abstract: 二维光子准晶楔形棱镜折射效应的双直线轨道探测方法,涉及一种双直线轨道探测方法。本发明的双直线轨道探测方法为:设置两条平行于二维光子准晶楔形棱镜斜边的直线轨道,根据两轨道与斜边的相对位置以及在两轨道上探测出的强度最大值位置,由几何关系及折射定律即可确定折射波束的折射角及等效折射率,以及出射位置及出射位置偏移量,即确定二维光子准晶楔形棱镜的折射效应。本发明的双直线轨道探测方法可应用于任意电磁波及任意二维N重准晶楔形棱镜。本发明适用于光子晶体,尤其光子准晶领域。同时,本发明也解决了以往单一圆弧形轨道探测方法未能准确探测或计算折射角及等效折射率的问题。
-
公开(公告)号:CN101866039A
公开(公告)日:2010-10-20
申请号:CN201010239974.7
申请日:2010-07-29
Applicant: 哈尔滨工业大学
IPC: G02B7/00
Abstract: 耐高低温中波红外光学窗口及其制作方法,它涉及一种光学窗口及其制作方法,它解决了目前现有的光学窗口在高低温试验时,由于窗口两侧的温度梯度易使窗口处于常温侧结霜,导致光学成像模糊的问题。耐高低温中波红外光学窗口,它由铝箔纸、两个单层热压窗片、隔圈和干燥氮气组成,两个单层热压窗片平行相对设置,且二者间由隔圈隔开,使二者与隔圈之间形成密封夹层,密封夹层内充有干燥氮气,铝箔纸设置在两个单层热压窗片及隔圈的外侧周边上;上述光学窗口的制作方法主要通过清洁、粘胶以及充气等步骤完成对该光学窗口的制作。本发明适用于高低温光学试验领域。
-
公开(公告)号:CN119965649A
公开(公告)日:2025-05-09
申请号:CN202510133061.3
申请日:2025-02-06
Applicant: 哈尔滨工业大学
IPC: H01S3/06
Abstract: 一种固体激光器凹型板条泵浦结构,属于固体激光器技术领域。本发明的板条型增益介质被具有内凹形状并且两侧配有分光棱镜,该内凹面作为泵浦面,使泵浦源发出的光线经过分光棱镜反射并由泵浦面进入增益介质内部并经过多次反射,拥有较长的吸收光程,使得泵浦光被充分吸收,提高泵浦效率和激光输出功率。泵浦面是平面或柱面形状,泵浦源是单条激光二极管或激光二极管阵列,泵浦面上镀有对泵浦波长具有高透过率的增透膜,减少反射损失。分光棱镜镀有对泵浦光具有高反射率的增反膜,确保泵浦光尽可能多的进入增益介质。增益介质与热沉紧密结合以有效散热。本发明通过优化板条形状并配合分光棱镜,已达到提高泵浦效率的作用,且具有结构紧凑的特点。
-
公开(公告)号:CN118795448A
公开(公告)日:2024-10-18
申请号:CN202410801483.9
申请日:2024-06-20
Abstract: 一种高精度激光散射回波微多普勒效应半实物仿真系统,属于实物仿真成像装置技术领域,本发明为了解决现有实物仿真系统存在的信号采集和处理精度不足,难以准确识别高速运动的复杂目标的问题以及实验室条件下的仿真系统不能完全再现真实战场环境,影响了测试结果的可靠性,本申请包括激光发射与接收模块、光纤耦合模块、多普勒调制模块和微多普勒调制模块,所述激光发射与接收模块中的激光发射端发出高强度的信号光,信号光经过光纤耦合模块和多普勒调制模块后并激射在位于微多普勒调制模块中的实物模型上产生散射光,散射光经过光纤耦合模块并回传至激光发射与接收模块中的激光接收端上,本申请用作实验室内进行半实物仿真的装置。
-
公开(公告)号:CN105005212B
公开(公告)日:2018-04-20
申请号:CN201510540537.1
申请日:2015-08-28
Applicant: 哈尔滨工业大学
IPC: G05B17/02
Abstract: 一种应用于半实物仿真实验中帧同步的实现方法。本发明属于半实物仿真实验的技术领域。它的方法步骤一:将目标模拟器中视频信号处理芯片的帧同步信号、目标模拟器电路电源+Vpp和目标模拟器电路地都飞线引出;二:将视频信号处理芯片的帧同步信号通过电阻R1输入到运算放大器A1的反向输入端内,同时帧同步信号通过电阻R1、电阻Rf输入到光耦A2中的发光二极管的正极端内,光耦A2中的光敏三极管的发射极通过电阻R3接地;三:将光耦A2中的光敏三极管的发射极端输出的触发信号输入到CCD相机的曝光拍照触发输入端内。本发明能有效的完成仿真实验中帧同步的难题,使得目标模拟器与目标接收装置达到精确的帧同步效果,使得仿真实验可以顺利的进行。
-
公开(公告)号:CN106338222B
公开(公告)日:2017-10-24
申请号:CN201610847376.5
申请日:2016-09-23
Applicant: 哈尔滨工业大学 , 北京电子工程总体研究所
IPC: F41G3/32
Abstract: 本发明公开了一种具有球面运动轨迹的光学目标运动仿真系统,所述光学目标运动仿真系统包括光学目标模拟器、球面运动系统以及支撑平台机构,所述球面运动系统包括方位圆弧运动机构、俯仰圆弧运动机构和导轨连接件,光学目标模拟器侧面安装在俯仰圆弧运动机构上,光学目标模拟器的光轴与安装面平行,通过调节导轨连接件的位置使光学目标模拟器做俯仰圆弧运动时光轴的回转中心与方位圆弧运动机构的圆心的连线垂直于方位圆弧运动的导轨面,从而实现了光学目标模拟器的球面运动轨迹,且光学目标模拟器的光轴始终指向球面运动系统的球心。相比其他光学目标运动仿真系统,该光学目标运动仿真系统具有结构紧凑和成本低的特点。
-
公开(公告)号:CN106369248A
公开(公告)日:2017-02-01
申请号:CN201610843214.4
申请日:2016-09-23
Applicant: 哈尔滨工业大学
IPC: F16M7/00
CPC classification number: F16M7/00
Abstract: 一种可实现平台升降及水平调整功能的支撑机构,属于平台支撑技术领域,解决了现有的平台存在的问题,它包含螺纹支撑杆、调节螺帽、半球形球头、定位销、底座、防脱落挡片和平台连接套筒;在螺纹支撑杆的一端设置有调节螺帽,在螺纹支撑杆的另一端设置有半球形球头,半球形球头的轴心线与螺纹支撑杆的轴心线设置在一条直线上,半球形球头的直径大于螺纹支撑杆的直径;底座为圆柱形状,在底座的一个平面上设置有圆柱形凹槽,在圆柱形凹槽的底部设置有与半球形球头吻合的半球形凹槽,半球形球头设置在底座的半球形凹槽内,防脱落挡片与底座通过螺栓来连接;平台连接套筒用于支撑机构与平台的连接;本发明用于支撑平台。
-
公开(公告)号:CN105093523A
公开(公告)日:2015-11-25
申请号:CN201510578682.9
申请日:2015-09-11
Applicant: 哈尔滨工业大学
IPC: G02B27/00
CPC classification number: G02B27/0025
Abstract: 本发明公开了一种多尺度多孔径光学成像系统,所述光学成像系统由一个中心光学成像系统和四个拥有完全相同光学结构的副光学成像系统组成,中心光学成像系统为旋转对称系统,光轴与系统中心轴重合,四个副光学成像系统位于中心光学成像系统后方,从像截面上看,四个副光学成像系统光轴分布在以中心光学成像系统光轴为中心的长方形顶点上,目标发出的不同角度的平行光分别通过中心光学成像系统和副光学成像系统成像于在同一探测器像平面内不同坐标点上。应用本系统收集目标物体信息能够获得分立的多幅目标图像,中心图像分辨率高于副图像分辨率,各图像在视场上有一定像素数的重合,能够为后续数据处理提供良好的支持。
-
公开(公告)号:CN103064185B
公开(公告)日:2015-11-25
申请号:CN201310010463.1
申请日:2013-01-11
Applicant: 哈尔滨工业大学
Abstract: 一种红外光学系统,涉及一种应用于红外/激光双模制导中的红外成像制导光学系统。本发明的红外光学系统从物面到像面依次同轴设置有整流罩(1)、第一透镜组(2)、棱镜(3)、第二透镜组(4)和红外成像探测器(5),采用折射二次成像的结构形式达到了大视场的要求,同时实现了100%的冷光阑效率,中间像面处设置有视场光阑,可以很好的抑制杂散光,且该系统适用于小像元探测器,提高了系统的成像分辨率。本发明红外成像光学系统通过引入非球面和二元光学技术,有效提高了系统的成像质量,简化了系统的结构。本发明的红外光学系统具有大视场、高分辨率、高精度的优点。
-
-
-
-
-
-
-
-
-