一种支撑轴弯曲间隙及刚度自动测量装置及其测量方法

    公开(公告)号:CN105823456A

    公开(公告)日:2016-08-03

    申请号:CN201610287478.6

    申请日:2016-05-03

    CPC classification number: G01B21/16 G01N3/10

    Abstract: 本发明公开了一种支撑轴弯曲间隙及刚度自动测量装置及其测量方法。本发明通过测量杆将微小弯曲间隙放大,以气缸配合气动滑台为动力机构,连接带动施力构件对测量杆施加压力,并通过位移传感器及压力传感器实时采集测量杆的位移数据及受力数据,进一步计算出支撑轴的弯曲间隙角及刚度。本发明通过两个位移传感器实现对弯曲间隙的精确测量,消除了由扭矩输入时弯曲间隙的顶点相对于轴心的径向窜动带来的不利影响;气缸带动施力构件施加扭矩实现从零到特定扭矩的连续输出;测量高度自动化,避免了因操作人员技能水平不同带来的人为误差影响,其测量精度更高,且测量过程自动化程度高,对测量人员技能要求低,重复性、可靠性大,操作简单、效率高。

    一种煤矿井下移动设备自主定位的方法及系统

    公开(公告)号:CN105547288A

    公开(公告)日:2016-05-04

    申请号:CN201510900007.3

    申请日:2015-12-08

    CPC classification number: G01C21/165 G01C21/20

    Abstract: 本发明公开了一种煤矿井下移动设备自主定位的方法。首先在起始点通过三维激光扫描仪扫描得到三维点云数据Pi;然后移动设备开始移动,其间通过惯性传感器与里程计传感器的测量数据融合进行航位推算得到设备实时的位置;在距离起始点不远处停止移动,在停止点扫描得到三维点云数据Pi+1,通过配准Pi与Pi+1得到两点之间的位移与姿态变化后更新停止点的位置,停止点作为起始点重复上述步骤完成整个实时定位过程。相应地,本发明还提供了与该方法对应的定位系统。本发明对环境要求低,能够在煤矿井下恶劣的环境下实现高精度定位,同时可以建立整个环境的三维可视化模型。

    一种基于二维激光扫描的掘进机掘进窗口快速检测方法

    公开(公告)号:CN105547166A

    公开(公告)日:2016-05-04

    申请号:CN201510954298.4

    申请日:2015-12-17

    CPC classification number: G01B11/03

    Abstract: 本发明公开了一种基于二维激光扫描的掘进机掘进窗口快速检测方法,首先,对掘进工作面分别进行水平和垂直二维扫描,对采集到的原始点云数据进行去离群点处理;然后,分别对去离群点之后的水平和垂直二维扫描点云数据进行直线拟合、求中心线、确定基点的操作,完成窗口检测的准备工作;最后,输入目标距离,分别在水平与垂直中心线上,以基点为原点的目标距离处作垂线与拟合得到的两条直线相交,获得点对,水平点对的空间距离是目标距离处的掘进窗口宽度,垂直点对的空间距离是目标距离处的掘进窗口高度。本发明提供的技术方案能够快速地检测出多个目标距离上的掘进窗口尺寸,为工作人员提供及时有效的参考与校正,确保实际掘进过程的合理性。

    一种基于运动检测的图像去模糊方法及装置

    公开(公告)号:CN103440624B

    公开(公告)日:2016-01-13

    申请号:CN201310341341.0

    申请日:2013-08-07

    Abstract: 本发明提供一种基于相机运动检测的图像去模糊方法,首先通过惯性导航器件获取曝光期间相机的运动参数,根据运动参数估计相机的大致运动轨迹;然后根据运动轨迹由多视几何学获取曝光期间图像的模糊核;最后由维纳滤波算法得到去模糊后的清晰图像。结果表明这种方法能够准确地检测曝光期间相机的运动情况,并根据运动轨迹快速、准确地生成模糊核,最终通过逆滤波得到相对清晰的图像。

    一种基于模仿学习和强化学习的高速运动车辆控制方法

    公开(公告)号:CN113715842A

    公开(公告)日:2021-11-30

    申请号:CN202110971772.X

    申请日:2021-08-24

    Abstract: 本发明公开了一种基于模仿学习和强化学习的高速运动车辆控制方法,包括如下步骤:S1,对高速运动车辆进行动力学建模,并对驾驶员驾驶过程中的高速运动车辆的高速动力学参量以及道路中的交通信息进行特征提取,以采集相关数据,得到用于训练的数据集;S2,构建Actor网络和Critic网络,二者共享相同的前置特征提取网络,利用步骤S1中得到的数据集使用模仿学习对Actor网络和Critic网络分别进行初始化,将高速运动学参量作为网络奖励函数的奖励因素进行计算,并对初始化后的Actor网络和Critic网络使用强化学习进一步优化;S3,利用步骤S2中经过初始化后的Actor网络和Critic网络,对车辆的期望速度及动作进行自主决策。

    一种电液伺服阀叠合量快速气动测量气路及测量方法

    公开(公告)号:CN111503090A

    公开(公告)日:2020-08-07

    申请号:CN202010343163.5

    申请日:2020-04-27

    Abstract: 本发明公开了一种电液伺服阀叠合量快速气动测量气路及测量方法,所述气路:由一个气源、一个过滤器、两个减压阀、两个电磁阀、两个节流阀、两个流量传感器及多个气压传感器组成;所述测量方法:先是获取电液伺服阀滑阀副阀芯初始位置符合正态分布的样本,并根据所述样本与行为预测算法,得到一个合适的单侧置信区间边界,然后在正式测量前先将滑阀副阀芯的初始位置移动到单侧置信区间边界处,接着再开始控制滑阀副阀芯左移或右移,在阀芯左移或右移的过程中通过上述测量气路测量气路流量,并反馈到工控机,最后通过工控机绘制出滑阀副全行程流量与位移曲线,并经计算得到滑阀副的叠合量。本发明具有测量过程短,测试速度快,自动化程度高等优点。

    一种差压式气密性检漏装置及其泄漏流量的检测方法

    公开(公告)号:CN109238597B

    公开(公告)日:2019-05-24

    申请号:CN201811200097.5

    申请日:2018-10-16

    Abstract: 本发明公开了一种差压式气密性检漏装置及其泄漏流量的检测方法,其装置包含:气源、调压阀、第一气动阀、第二气动阀、第三气动阀、第四气动阀、第五气动阀、气压计、差压传感器、标准容器、被测容器、消音器及辅助容器。针对被测容器容积是否已知,本发明提供了两种泄漏流量检测方法:即被测容器在已知和未知容积两种情形下的泄漏流量检测方法;对于被测容器:在已知容积情形下的泄漏流量检测第一步需先断开辅助容器;在未知容积情形下的泄漏流量检测第一步需先接通辅助容器,而两种检测方法的其余步骤同现有检测方法类似。本发明优点是:既可用于被测容器在已知容积情形下的泄漏流量检测,又可用于被测容器在未知容积情形下的泄漏流量检测。

    一种网络化多电机同步控制系统及方法

    公开(公告)号:CN107425757B

    公开(公告)日:2018-03-27

    申请号:CN201710534525.7

    申请日:2017-07-03

    Abstract: 本发明公开了一种网络化多电机同步控制系统及方法,该系统包括基于SOPC的多轴同步控制模块、PLC控制器、上位机、人机界面、现场IO设备、脉冲采集模块和伺服电机驱动模块;通过脉冲采集模块采集主令电机编码器输出的编码脉冲信号经过磁耦隔离处理后发送到多轴同步控制模块,多轴同步控制模块对接收到的脉冲信号进行周期性的计数采样,同时也接收来自上位机和人机界面传来的控制命令,最终将控制命令转化为PWM控制信号,经过伺服电机驱动模块后控制从电机转动;本发明提供的系统结构简单,具有良好的可扩展性,集成了工业以太网接口,并实现了通过网络对各从电机之间的高精度同步控制,并可以在远程方便地监控调试现场数据。

    一种三维激光扫描装置的系统参数校准方法

    公开(公告)号:CN104990501B

    公开(公告)日:2018-01-26

    申请号:CN201510411596.9

    申请日:2015-07-14

    Abstract: 本发明公开了一种三维激光扫描装置的系统参数校准方法,由于激光扫描装置系统参数在测量时存在固有的机械安装与测量误差,每个参数都需要在测量值的基础上进行微调。本发明公开了一种获取系统参数微调量的可靠方法。首先,通过三维激光扫描装置获取标准平面标靶的点云模型,然后,确定一个评价指数作为点云模型精度的度量,使得系统参数的微调量与点云模型精度度量成函数关系;最后,运用模式搜索方法寻找一组能够使点云模型精度最高即精度度量值取到最优值的系统参数微调量,这组微调量就是最优的系统参数微调量。结果表明,系统参数在使用这种方法进行校准之后,扫描装置扫描三维空间场景获取的点云数据的精度得到了有效提升。

Patent Agency Ranking