-
公开(公告)号:CN118094958B
公开(公告)日:2024-07-16
申请号:CN202410475696.7
申请日:2024-04-19
Applicant: 中南大学
IPC: G06F30/20 , G06F18/22 , G06F111/10 , G06F113/08
Abstract: 本发明提供了一种射流振荡器简化模型的设计方法,包括:将射流出口平面划分为多个区域,在每个区域的中心点设置测点;获取各个测点的时程速度数据,并分析相应区域的速度特性;对不同区域速度的相似性进行判断;基于判断结果绘制成强相似测点热力图;划分等效区域;用同一个速度函数来描述速度型相似的各个等效区域。本发明达到了对射流振荡器仿真模型进行简化的目的,简化模型与完整模型的仿真结果以及实验测试结果存在良好的相似性,说明简化模型能有效且准确的表征射流行为,为射流相关的流动控制研究提供了新的方式,极大节省未来的计算资源,提升了计算效率。
-
公开(公告)号:CN116639156A
公开(公告)日:2023-08-25
申请号:CN202310288350.1
申请日:2023-03-23
Applicant: 中南大学
IPC: B61D27/00
Abstract: 本发明涉及高速铁路隧道内列车气动效应控制技术领域,具体涉及一种高速列车过隧道时车厢内部气压的调控方法及系统。该高速列车过隧道时车厢内部气压的调控方法包括:从高速列车控制系统获取所述列车即将进入隧道的时间t;比较所述t和t0的大小:当t>t0时,控制所述车厢通风系统保持正常模式;当t≤t0时,控制所述车厢通风系统切换为降压模式,直到列车驶入隧道,控制所述车厢通风系统切换为正常模式;所述t0为预计的车厢通风系统运行在降压模式的时长,所述降压模式是车厢通风系统持续向外排风,以人耳能接受的速率使车厢内部气压下降的工作模式。
-
公开(公告)号:CN118094958A
公开(公告)日:2024-05-28
申请号:CN202410475696.7
申请日:2024-04-19
Applicant: 中南大学
IPC: G06F30/20 , G06F18/22 , G06F111/10 , G06F113/08
Abstract: 本发明提供了一种射流振荡器简化模型的设计方法,包括:将射流出口平面划分为多个区域,在每个区域的中心点设置测点;获取各个测点的时程速度数据,并分析相应区域的速度特性;对不同区域速度的相似性进行判断;基于判断结果绘制成强相似测点热力图;划分等效区域;用同一个速度函数来描述速度型相似的各个等效区域。本发明达到了对射流振荡器仿真模型进行简化的目的,简化模型与完整模型的仿真结果以及实验测试结果存在良好的相似性,说明简化模型能有效且准确的表征射流行为,为射流相关的流动控制研究提供了新的方式,极大节省未来的计算资源,提升了计算效率。
-
公开(公告)号:CN117074052A
公开(公告)日:2023-11-17
申请号:CN202311049342.8
申请日:2023-08-18
Applicant: 中南大学
Abstract: 本发明提供了一种非各向同性湍流下移动列车脉动风速谱的正向分析方法,包括:获取铁路沿线脉动风特性参数与非各向同性湍流参数;评估环境风与移动列车之间的相对关系;计算非各向同性湍流下移动列车脉动风速谱。本发明能够对铁路沿线非各向同性湍流进行定量描述,并基于非各向同性湍流获得移动列车脉动风速谱,适应铁路沿线的实际风场,从而以此为基础获得湍流侧风作用下列车所受的气动载荷等,以对列车在湍流侧风作用下的运行安全性进行论证;该方法能够由实测湍流功率谱密度直接计算移动列车脉动风速谱,适应铁路沿线风场特征且无需重复复杂的推导工作,提升了移动列车脉动风速谱计算精度与效率。
-
公开(公告)号:CN117669309A
公开(公告)日:2024-03-08
申请号:CN202311625713.2
申请日:2023-11-30
Applicant: 中南大学
IPC: G06F30/23 , G06F30/28 , G06F17/13 , G06F113/08
Abstract: 本公开实施例中提供了一种用于高阶有限差分通量求解的网格几何诱导误差降低方法,属于计算技术领域,具体包括:步骤1,对复杂外形生成非均匀非正交贴体网格,将流体控制方程通过坐标转换映射到曲线坐标系,其中,所述复杂外形包括飞机、列车或轮船对应的机体外形;步骤2,将曲线坐标系下的复杂网格对应的对流通量进行分项分解,得到对流通量一项和对流通量二项;步骤3,分别对流通量一项和对流通量二项采用矢通量分裂格式进行通量分裂处理,获得对流通量一项和对流通量二项对应的节点处正/负通量;步骤4,对节点处正/负通量采用预设格式进行导数的离散求解,降低复杂网格的几何诱导误差。通过本公开的方案,提高了计算稳定性和求解精度。
-
公开(公告)号:CN117113876A
公开(公告)日:2023-11-24
申请号:CN202311047114.7
申请日:2023-08-18
Applicant: 中南大学
IPC: G06F30/28 , G01P5/00 , G06F17/18 , G06F113/08 , G06F119/12 , G06F119/14
Abstract: 本发明提供了一种基于时间序列分析的铁路沿线脉动风特性描述方法,包括如下步骤:铁路沿线瞬时风速数据的采集与清洗;基于时间序列分析进行铁路沿线瞬时风速趋势提取与脉动风速计算;对脉动风速进行统计分析,获得铁路沿线脉动风特性的统计描述。本发明能够准确测量铁路沿线脉动风特性,针对铁路沿线瞬时风速的非平稳特性,利用时间序列平稳性检验方法,提取瞬时风速趋势并计算脉动风速,能够适应瞬时风速强烈的非平稳特性;针对铁路沿线风场的多尺度特性,考虑了非各向同性湍流的湍流功率谱密度与湍流积分尺度拟合,能够准确描述铁路沿线脉动风特性,为湍流侧风作用下列车与附属设施气动特性研究提供了基础。
-
公开(公告)号:CN116890886A
公开(公告)日:2023-10-17
申请号:CN202310858237.2
申请日:2023-07-13
Applicant: 中南大学
IPC: B61D17/02
Abstract: 本发明提供了一种提升大风环境下列车运行安全的涡控制方法,当列车遭遇横风时,通过列车顶面位于背风侧的涡流发生器,在横风下产生小尺度的流向涡,流向涡向下游背风侧发展,被吸入列车背风侧的大尺度拖曳涡,降低拖曳涡的强度,提升列车背风侧压力,减小列车横向力和倾覆力矩。本发明从对运行列车近体区流场进行涡结构干扰的主动干预思路出发,通过列车顶面的涡流发生器实现对大风环境下运行列车安全的主动控制,突破了风环境下运行列车安全的传统被动式控制措施研究思维,为列车运行安全的主动控制提供了新的研究思路,也为以后采用类似涡流发生器控制方法的列车运行安全主动控制技术的研究提供了有价值的参考依据。
-
公开(公告)号:CN116517602A
公开(公告)日:2023-08-01
申请号:CN202310605701.7
申请日:2023-05-26
Applicant: 中南大学
Abstract: 本发明提供了一种全域调控的高速铁路隧道、缓冲结构设计方法,包括:在隧道入口,通过缓冲结构延长初始压缩波的上升时间,使得压力上升分为两个阶段,降低压力梯度幅值;在隧道内部设置减压腔,使得压缩波在减压腔内发生多次振荡,耗散压力波能量从而缓解压力波和压力梯度幅值;同时也可在隧道内部壁面采用局部吸气方法进一步降低初始压缩波强度;在隧道出口,增大缓冲结构透孔率,引导气流通过孔流向外部耗散能量,进一步缓解隧道出口微气压波幅值。本发明通过在隧道入口‑隧道中‑隧道出口逐级能量耗散实现对隧道内交变压力幅值、隧道出口微气压波的有效缓解,满足多运行条件下列车快速通过隧道的气动要求,且同时能够满足双向行驶需求。
-
公开(公告)号:CN116399497A
公开(公告)日:2023-07-07
申请号:CN202310674841.X
申请日:2023-06-08
Applicant: 中南大学
Abstract: 本发明公开了一种面向列车表面剪切应力的测量方法,包括以下步骤:基于预估的待测试列车表面所需的剪切模量,制备膜式传感器;将膜式传感器安装在静态标定试验台上,并进行表面像素与实际位移校准;依次旋转标定实验台进行增载和减载测试,并依次进行拍照,通过PIV互相关分析,构建剪切应变与剪切应力的关系,获得传感器的剪切模量;设置辅助光源,于静止状态下通过PIV相机捕捉膜式传感器上的粒子位置;启动风洞开展测试,通过PIV相机捕捉膜式传感器上粒子位置;通过PIV后处理系统计算膜式传感器上粒子位移,通过PIV后处理系统的图像处理得到表面的剪切应力分布。本发明可以灵活、简单、高分辨率的测试高速列车表面的剪切力分布。
-
公开(公告)号:CN115455662A
公开(公告)日:2022-12-09
申请号:CN202211000409.4
申请日:2022-08-19
Applicant: 中南大学
IPC: G06F30/20 , G06F30/15 , G06K9/62 , G06F119/14
Abstract: 本发明涉及列车动态密封指数计算技术领域,尤其涉及一种列车动态密封指数计算方法、系统及存储介质,该方法采用三分搜索算法思路在预估动态密封指数分布区间内搜索寻找最优列车动态密封指数。这样,由于采用具有对数阶时间复杂度的三分搜索算法替代现有计算方法中的具有线性阶时间复杂度的遍历搜索方法,使得对列车动态密封指数的计算耗时明显减少、减少效率显著提高,并且得助于对数阶时间复杂度的三分搜索算法的计算耗时随着搜索区间尺度规模的增大变化不明显的特征,实现了高计算效率与高计算精度的共存。
-
-
-
-
-
-
-
-
-