原端电感选频的多负载无线能量传输装置

    公开(公告)号:CN103346627A

    公开(公告)日:2013-10-09

    申请号:CN201310329416.3

    申请日:2013-07-31

    Abstract: 原端电感选频的多负载无线能量传输装置,属于无线能量传输领域,本发明为解决现有的固定结构只能选择性的给指定需要充电的负载充电的问题。本发明包括能量发射装置和N个能量接收装置,能量发射装置的电信号输入端用于连接外部供电电源,N个能量接收装置的电信号输出端分别连接N个负载的电信号输入端,能量发射装置和N个能量接收装置通过耦合方式无线连接;能量发射装置包括发射端变换器和无线能量发射电路,每个能量接收装置包括无线能量接收模块和接收端变换器,无线能量发射电路包括电容装置和电感装置,电感装置包括支路选择器和电感控制电路,电感控制电路包括N条电感支路。本发明用于单能量发射端和多能量接收端的负载充电系统。

    直升机旋翼桨叶动平衡参数校准装置

    公开(公告)号:CN102944361A

    公开(公告)日:2013-02-27

    申请号:CN201210520642.5

    申请日:2012-12-06

    Abstract: 直升机旋翼桨叶动平衡参数校准装置,涉及直升机旋翼桨叶的测试及校准技术,为了解决背景技术中的直升机旋翼桨叶动平衡试验校准存在测量结果的误差较大、可靠性差的问题。利用动平衡试验台的三束激光器组成一个激光测量平台,通过桨叶切割激光光束的方法非接触测量旋翼桨叶的挥舞参数,以CPLD和DSP为核心设计脉冲时序测量和控制系统,测量旋翼桨叶挥舞和摆振特性参数。标定装置采用固定高度差的模拟桨叶,通过伺服马达以稳定的转速转动,由模拟桨叶切割激光光束的方法现场对旋翼桨叶动平衡试验台进行标定,将标定结果溯源到国家长度标准,保证测量结果的准确性和溯源性,为直升机旋翼桨叶的研制和实验提供计量保障。

    多参数自确认传感器的状态自确认方法

    公开(公告)号:CN101382439B

    公开(公告)日:2010-12-29

    申请号:CN200810137401.6

    申请日:2008-10-27

    Abstract: 多参数自确认传感器及其状态自确认方法,它涉及传感器领域,它解决了现有多参数传感器不能够对自身状态进行评估的问题,以及发生故障时,不能判断故障类型、不能得到正确数据的缺点。本发明是将多个被测物理量经敏感元件和传统的分析处理单元得到原始数据,这些原始测量数据经故障诊断单元后,再经输出数据生成单元得到更加丰富的输出信息。多参数传感器比单一参数传感器输出更多的物理量测量值,其中一些物理量之间通常存在着相关性,这些相关性是故障诊断和状态确认的重要条件。本发明能够在线评估工作状态和输出数据不确定度,使系统能清晰了解传感器的在线工作状态和输出数据的可信度,并在发生故障时,能够诊断出故障类型,实现数据重构。

    一种抗耦合系数宽范围变化的无线充电系统参数设计方法

    公开(公告)号:CN119448591A

    公开(公告)日:2025-02-14

    申请号:CN202411457201.4

    申请日:2024-10-18

    Abstract: 本发明公开了一种抗耦合系数宽范围变化的无线充电系统参数设计方法,包括步骤一:根据无线充电系统的主电路架构以及实际工况要求,设定系统技术指标;步骤二:根据所设定的技术指标,设计初始系统功率‑耦合曲线及补偿元件参数;步骤三:判断耦合系数kps是否处于初始耦合系数变化范围的内部。若是,占空比为初始占空比D0,结束;若否,进入步骤四;步骤四:判断耦合系数kps是否大于初始最大耦合系数kmax0。若是,先对耦合系数kps进行右侧范围判定,确定n值,再设计对应的右侧第n占空比DRn,结束;若否,先对耦合系数kps进行左侧范围判定,确定n值,再设计对应的左侧第n占空比DLn,结束。本发明能够保证系统输出功率在耦合系数宽范围变化时波动较小。

    一种抗耦合系数宽范围波动的无线充电系统参数设计方法

    公开(公告)号:CN119448590A

    公开(公告)日:2025-02-14

    申请号:CN202411457198.6

    申请日:2024-10-18

    Abstract: 一种抗耦合系数宽范围波动的无线充电系统参数设计方法,包括步骤一:根据无线充电系统的主电路架构以及实际工况要求,设定系统技术指标;步骤二:根据系统输出功率波动比δ,分别计算系统工作频率f1和f2下的耦合变化倍数β1和β2以及实际的耦合变化倍数β0;步骤三:根据系统工作频率f1及其耦合变化倍数β1,计算系统工作频率f2;步骤四:确定系统功率‑耦合曲线Po(kps)中的各耦合系数;步骤五:完成各补偿元件参数的整定以及分别计算系统工作频率f1和f2下的原边失谐率α1和α2。本发明在不引入任何控制单元或交流开关的前提下,能够在耦合系数波动接近250%的范围内,系统功率波动始终介于设定的5%以内,因此在实际应用中具有较大优势。本发明属于无线电能传输技术领域。

    一种变频可重构的无线电能传输系统及参数设计方法

    公开(公告)号:CN119401677A

    公开(公告)日:2025-02-07

    申请号:CN202411457196.7

    申请日:2024-10-18

    Abstract: 一种变频可重构的无线电能传输系统及参数设计方法,它涉及一种无线电能传输系统及参数设计方法。本发明为了解决面对较宽的耦合系数波动,现有技术难以维持接近恒定功率传输的问题。本发明所述系统包括全桥逆变电路、原边补偿网络、耦合线圈、副边补偿网络和整流滤波电路;全桥逆变电路的输入端与直流电压源UD连接,全桥逆变电路的输出端与原边补偿网络的输入端连接,原边补偿网络的输出端与耦合线圈的原边输入端连接,耦合线圈的副边输出端与副边补偿网络的输入端连接,副边补偿网络的输出端与整流滤波电路的输入端连接,整流滤波电路的输出端与电池负载Ro连接。本发明属于无线电能传输技术领域。

    电动汽车无线充电互操作性判定方法及系统

    公开(公告)号:CN118219876A

    公开(公告)日:2024-06-21

    申请号:CN202410459884.0

    申请日:2024-04-17

    Abstract: 电动汽车无线充电互操作性判定方法及系统,涉及电动汽车无线充电监测方法和装置。目的是为了克服现有用于电动汽车无线充电互操作性判定方法或系统中阻抗容忍区域判定准确性低的问题,其中步骤如下:步骤一、当电动汽车无线充电发射端的发射线圈与电动汽车无线充电接收端的接收线圈匹配充电时,获得发射线圈的阻抗ZGA;步骤二、将ZGA的值导入预设的阻抗图中;步骤三、检测阻抗ZGA的值是否位于阻抗图的可完全互操作区域或可容忍互操作区域;若是,则判定电动汽车无线充电发射端与电动汽车无线充电接收端可互操作;否则,判定电动汽车无线充电发射端与电动汽车无线充电接收端不可互操作。

    一种用于浓度预测的气体传感器在线漂移补偿方法

    公开(公告)号:CN115808504B

    公开(公告)日:2024-06-04

    申请号:CN202211523964.5

    申请日:2022-12-01

    Abstract: 本发明公开了一种用于浓度预测的气体传感器在线漂移补偿方法。步骤1:目标区域的,所述数据集包括带有标签的源域数据集及无标签的目标域数据集;对源域数据进行归一化,使其样本和标签都处于‑1至1之间;步骤2:基于步骤1的源域数据集训练OELM,从而建立浓度预测模型;步骤3:基于步骤2的浓度预测模型略对目标域的气体传感器样本进行浓度预测;步骤4:基于步骤3预测的浓度利用SQS方法判断当前样本是否需要进行人工标注,若不需要人工标注则进行步骤5;若需要人工标注则进行步骤6;步骤5:重新回到步骤3;步骤6:标注该样本并使用它对OELM进行更新。本发明用以解决现有技术中漂移补偿不能在线应用于浓度预测及人工标注成本高的问题。

    基于层间耦合的检测线圈结构及金属物体检测系统

    公开(公告)号:CN113253353B

    公开(公告)日:2024-05-14

    申请号:CN202110408113.5

    申请日:2021-04-15

    Abstract: 本发明公开了一种基于层间耦合的检测线圈结构及金属物体检测系统,其中,该检测线圈结构包括:上层子检测线圈和下层子检测线圈,上、下层子检测线圈结构相同、尺寸近似或相同,且彼此正交、检测线圈外边界、几何对称中心均完全重合;上层子检测线圈包括第一、第二、第三和第四端子,下层子检测线圈包括第五、第六、第七和第八端子,第一、第二端子连接,第七、第八端子连接,第三、第四端子分别与第五、第六端子连接,当线圈附近无金属物体时,上、下两层子检测线圈完全解耦,互感为零;反之附近存在时,该检测线圈结构可利用两层子检测线圈之间的互感耦合效应显著放大金属物体对检测线圈整体的阻抗变化,同时错位排布结构可进一步消除检测盲区。

    一种基于变构激活策略调控生物酶马达运动行为的方法

    公开(公告)号:CN113817714B

    公开(公告)日:2024-04-16

    申请号:CN202010568430.9

    申请日:2020-06-19

    Abstract: 一种基于变构激活策略调控生物酶马达运动行为的方法,属于生物抗菌、海洋防污、生物医药和微纳米马达合成和调控技术领域。针对现有的脂肪酶运动能力难以调控的现状,本发明将提出一种新方法来调控脂肪酶马达的运动行为。该方法步骤如下:一、利用不同方法修饰二氧化硅纳米粒子表面,使其成为亲水性和疏水性两种;二、制备生物酶马达;三、加入天然表面活性剂调控生物酶马达的运动性能。本发明基于变构激活的策略来调节脂肪酶的催化效率,从而提高脂肪酶驱动的微纳米马达的运动行为,具有操作简单、反应速度快、可控性强、成本低等优点。

Patent Agency Ranking