一种高导热石墨晶须/铜复合材料的制备方法

    公开(公告)号:CN102586704B

    公开(公告)日:2013-08-07

    申请号:CN201210080907.4

    申请日:2012-03-23

    Abstract: 本发明属于金属基复合材料研究领域,涉及一种高导热石墨晶须/铜复合材料及其制备方法。复合材料由基体纯铜和已镀覆的增强相高导热石墨晶须两部分组成,其中纯铜的体积分数为40%-70%,镀覆后的石墨晶须的体积分数为30%-60%。复合材料采用生产工艺步骤为:首先采用化学镀或盐浴镀方法,将铜或钼镀覆于石墨晶须的表面,形成1-2μm厚的镀层;然后将镀覆后的石墨晶须与铜粉按30-60:70-40的比例混合均匀,再通过SPS粉末冶金法在820-980℃下烧结制得石墨晶须/铜复合材料。本发明提供了一种用于电子封装领域的石墨晶须/铜复合材料的制备方法,其热导率高、热膨胀系数可控、致密高、易于加工等多项优点满足现代电子封装领域的要求。

    一种高分散超细钼基粉末的制备方法

    公开(公告)号:CN103008676A

    公开(公告)日:2013-04-03

    申请号:CN201310013091.8

    申请日:2013-01-15

    Abstract: 一种高分散超细钼基粉末的制备方法,属于稀土难熔金属材料技术领域。工艺流程为:首先采用低温燃烧合成法得到氧化钼、稀土氧化物(Y2O3、La2O3中的一种或两种)或氧化铜均匀混合的前驱体粉末,然后在流动氢气气氛中进行还原。易还原的氧化钨或氧化铜被还原成金属钼和铜,而不能还原的稀土氧化物颗粒保留下来,从而得到高分散超细Mo-稀土氧化物或Mo-Cu复合粉末。Mo-稀土氧化物粉末中稀土氧化物的重量百分含量为0.5~30%;Mo-Cu复合粉末中Cu的重量百分含量为5~40%。本发明的优点是所得的粉末颗粒粒径细小,表面活性高,缩短了烧结过程中的扩散路径,有利于获得致密度高、组织分布均匀的超细晶/纳米晶钼基合金。

    一种复杂形状生物医用多孔钛钼合金植入体的制备方法

    公开(公告)号:CN102335742B

    公开(公告)日:2013-01-30

    申请号:CN201110344241.4

    申请日:2011-11-04

    CPC classification number: Y02P10/295

    Abstract: 本发明提供了一种快速制备复杂形状生物医用多孔钛钼合金植入体的方法,属于生物医用多孔金属材料制备技术领域。采用钛、钼金属元素粉末与有机高分子粉末的混合物为原料,通过三维建模、选择性激光烧结快速成形、热脱脂和真空烧结等工艺,制备出生物医用多孔钛钼合金植入体。该工艺步骤简单,周期短,材料利用率高,成本低,便于制造任意复杂形状的多孔钛合金植入体,对植入体的个性化设计和快速制造更具有效率和经济优势。该工艺制备的钛钼合金材料孔隙均匀,孔隙率、开孔率和孔径可调节范围广,弹性模量和抗压强度与自然骨非常接近,可满足作为生物医用材料所需要的生物力学相容性要求。

    一种制备低体积分数多孔碳化硅陶瓷坯体的方法

    公开(公告)号:CN102875151A

    公开(公告)日:2013-01-16

    申请号:CN201210414247.9

    申请日:2012-10-26

    Abstract: 本发明一种制备低体积分数多孔碳化硅陶瓷坯体的方法,将常规陶瓷凝胶注模成形丙烯酰胺凝胶体系中的水用硅溶胶替代,形成硅溶胶-聚丙烯酰胺双凝胶网络体系。通过控制硅溶胶与丙烯酰胺的比例,并在浆料中添加一定比例的石墨粉,可以使得凝胶坯体在室温具有一定的强度,同时排胶后留下的硅溶胶凝胶网络还可以使坯体具备一定的强度,满足后期熔渗金属对坯体强度的要求。浆料中添加石墨粉能够有效避免碳化硅颗粒在凝胶过程中由于体积分数过低导致粘度低而产生沉降现象,石墨粉可以在排胶后期于空气中烧掉。采用上述方法可以以较低的成本制备体积分数为15~45%、强度超过3MPa、闭孔隙率小于0.5%的多孔碳化硅坯体。

    一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法

    公开(公告)号:CN101913878B

    公开(公告)日:2012-06-27

    申请号:CN201010230573.5

    申请日:2010-07-19

    Abstract: 一种制备碳化硅颗粒增强氮化硅复合陶瓷零件的方法,属于陶瓷零件制备技术领域。是将SiC粉末、Si3N4粉末及烧结助剂与石蜡基多组元粘结剂混合成均匀的喂料,喂料经注射成形所得的预成形坯经溶脱、热脱、1150~1200℃预烧结后,置于真空碳管炉在1800~1900℃、Ar气氛下常压烧结,制得SiCp/Si3N4复合陶瓷零件。本发明的优点是:可直接制备出几何形状复杂的SiCp/Si3N4复合陶瓷制品;制品组织均匀,尺寸精度高,且无须后续加工;可实现SiCp/Si3N4材料与零件的一体化成形;建立了具有形状复杂和尺寸精度高的SiCp/Si3N4复合陶瓷零件的低成本制备技术。

    一种强化熔渗Cu用注射成形金刚石粉末脱脂坯体的方法

    公开(公告)号:CN101845567B

    公开(公告)日:2012-01-25

    申请号:CN201010176957.3

    申请日:2010-05-14

    Abstract: 一种强化熔渗Cu用注射成形金刚石粉末脱脂坯体的方法,属于金属基复合材料领域。本发明将金刚石粉末表面先经过电镀或化学镀的方法镀覆0.5~3μm厚的Cu层后,再在镀铜金刚石粉末与粘结剂混合过程中混入一定比例(约占金刚石粉末体积的3%~30%)Cu粉末,该部分预混铜粉末与金刚石粉末表面镀覆的Cu层在高温下可以互相扩散,共同作为金刚石坯体预烧结时的烧结助剂,可以间接将金刚石粉末颗粒粘接在一起,从而强化坯体。采用上述方法,坯体强度由未强化前的0Mpa增加到3Mpa以上,可以较好的满足使用要求。本发明方法不但能够有效地增加坯体强度,而且强化助剂即为基体本身,不会引入其他的杂质,对最终所制备的复合材料的性能不会产生明显的影响。

    一种快速制备金刚石-碳化硅电子封装材料的方法

    公开(公告)号:CN102184873A

    公开(公告)日:2011-09-14

    申请号:CN201110100795.X

    申请日:2011-04-21

    Abstract: 本发明提供了一种快速制备金刚石-碳化硅电子封装材料的方法,其特征是按重量百分比,将10~15%的粘接剂,5~20%的石墨,20~40%的硅粉,30~60%的金刚石湿混16~24h。然后在100~200℃和10~50MPa压力下温压成形获得复合材料毛坯。在氩气气氛中1000~1100℃烧结16~24h,冷却后得到具有一定强度和孔隙度的金刚石/硅/碳多孔基体。将所制备的金刚石/硅/碳多孔基体置于石墨坩埚中,用液相渗透的渗料填埋后将坩埚整体置于高真空烧结炉中进行真空液相渗透0.5-1h,渗透温度1450~1550℃,真空度-0.08~-0.01MPa。冷却后即获得致密的金刚石-碳化硅电子封装材料。

    一种制备SiCp和SiCw混杂增强/Al复合材料的方法

    公开(公告)号:CN101691646B

    公开(公告)日:2011-02-16

    申请号:CN200910083656.3

    申请日:2009-05-06

    Abstract: 本发明属于金属基复合材料研究领域,涉及一种制备SiCp+SiCw混杂增强/Al复合材料的方法。其特征是先采用粉末注射成形的方法制备一个全部由SiCp组成的多孔预制坯,然后用浓度为5~50wt%的聚碳硅烷-二甲苯溶液浸渍由SiCp组成的多孔预制坯,浸渍完毕后将坯体放入氮气气氛中进行裂解,得到由SiCp+SiCw混合组成的预制坯,最后采用熔渗工艺将预制坯与Al进行复合,制得SiCp+SiCw混杂增强Al复合材料。该方法不仅可以实现SiCp与SiCw在Al基体中的均匀分布,而且可以通过控制浸渍聚碳硅烷(PCS)-二甲苯溶液的次数来准确调整SiCp与SiCw之间的比例,以实现对最终复合材料性能的控制。

    一种制备碳化硅颗粒增强氮化硅复相陶瓷零件的方法

    公开(公告)号:CN101913878A

    公开(公告)日:2010-12-15

    申请号:CN201010230573.5

    申请日:2010-07-19

    Abstract: 一种制备碳化硅颗粒增强氮化硅复合陶瓷零件的方法,属于陶瓷零件制备技术领域。是将SiC粉末、Si3N4粉末及烧结助剂与石蜡基多组元粘结剂混合成均匀的喂料,喂料经注射成形所得的预成形坯经溶脱、热脱、1150~1200℃预烧结后,置于真空碳管炉在1800~1900℃、Ar气氛下常压烧结,制得SiCp/Si3N4复合陶瓷零件。本发明的优点是:可直接制备出几何形状复杂的SiCp/Si3N4复合陶瓷制品;制品组织均匀,尺寸精度高,且无须后续加工;可实现SiCp/Si3N4材料与零件的一体化成形;建立了具有形状复杂和尺寸精度高的SiCp/Si3N4复合陶瓷零件的低成本制备技术。

    一种大量制备微细球形钛铝基合金粉的方法

    公开(公告)号:CN101850424A

    公开(公告)日:2010-10-06

    申请号:CN201010192205.6

    申请日:2010-05-26

    Abstract: 本发明提供一种大量制备微细球形钛铝基合金粉的方法,属于粉末制备的技术领域。以高纯铝和海绵钛为主要原料,以Al-Nb中间合金、Ti-B合金、钨粉、高纯度的钇屑为辅助原料,在真空自耗电极电弧凝壳炉或真空感应炉中熔炼成合金铸锭,然后经粗破碎、涡流气流磨研磨制成不规则微细合金粉末,最后经射频(RF)等离子体球化处理后制备出微细球形钛铝基合金粉。所制备合金粉末具有纯度高、粒度细小、粒度分布窄、均匀性好、球形度高、流动性好等优点,可满足注射成形、凝胶注模成形及热喷涂等技术工业生产的需要。

Patent Agency Ranking