一种铜铝三明治轧制复合带头缺陷长度的预测方法

    公开(公告)号:CN104985007A

    公开(公告)日:2015-10-21

    申请号:CN201510444234.X

    申请日:2015-07-24

    Applicant: 东北大学

    Abstract: 本发明提供一种铜铝三明治轧制复合带头缺陷长度的预测方法,包括:获取铜铝三明治轧制复合带头缺陷长度预测模型的参数,并根据所述铜铝三明治轧制复合带头缺陷长度预测模型的参数,得到轧制复合初始带材的厚度、轧制复合初始带材的半厚度、初始上层带材的厚度、初始内层带材的半厚度和轧制复合最终带材的半厚度,根据轧制复合的出入口厚度,得到道次压下率,通过建立铜铝三明治轧制复合带头缺陷长度预测模型,将所述铜铝三明治轧制复合带头缺陷长度预测模型的参数带入所述铜铝三明治轧制复合带头缺陷长度预测模型,得到预测的带头缺陷长度,由此,能够对复合带头的缺陷长度进行预测,进而大幅度的提升产量和减少不必要的切损。

    一种热连轧精轧厚度控制方法

    公开(公告)号:CN104741388A

    公开(公告)日:2015-07-01

    申请号:CN201510176042.5

    申请日:2015-04-15

    Applicant: 东北大学

    CPC classification number: B21B37/20

    Abstract: 本发明提供一种热连轧精轧厚度控制方法,包括获取轧机设备参数及带钢规格参数;对末机架轧机进行单位阶跃响应测试,确定单位阶跃响应周期即液压缸传递函数的时间参数、监控AGC系统的控制周期以及单位阶跃响应滞后采样离散点的个数;采用带惯性环节的比例积分控制器的Smith预估控制策略对末机架轧机进行控制;利用热连轧精轧监控AGC系统控制模型,通过调节液压缸进行下一周期厚度控制。本发明将监控AGC的控制过程等同于一个具有纯滞后的控制对象,将Smith预估补偿引入了监控AGC控制系统,用GM方法来直接对轧机的辊缝进行软测量,避开了由于HGC传递函数不准可能产生的计算误差,显著提高了控制系统的响应速度、稳定性和控制精度。

    一种测量传动系统转动惯量的方法

    公开(公告)号:CN102500629A

    公开(公告)日:2012-06-20

    申请号:CN201110374048.5

    申请日:2011-11-22

    Applicant: 东北大学

    Abstract: 一种测量传动系统转动惯量的方法,属于轧制过程自动控制技术领域,传动装置控制电机启动,电机带动卷取机工作;低速运转电机使传动机械设备处于热运转状态,所述的传动机械设备包括电机、减速机和卷取机;计算传动机械设备的摩擦转矩:绘制转速-摩擦转矩曲线;设置输出转矩限幅M0,测试传动机械设备的转动惯量;分别计算得到几组转动惯量,去掉其中的奇异点取剩下几组的平均值作为最终传动机械设备的转动惯量,本发明方法在大多传动调试环境下均能方便的实现,且不需要成本上的投入,精确得到了传动机械设备转动惯量后可以大幅度提高张力控制精度并提高轧制过程的稳定性,可以广泛推广到板带箔轧制厂中。

    周期变厚度带材轧制速度的控制方法

    公开(公告)号:CN101890434B

    公开(公告)日:2012-05-23

    申请号:CN201010217977.0

    申请日:2010-07-06

    Applicant: 东北大学

    Abstract: 周期变厚度带材轧制速度的控制方法属于轧制技术领域。本发明包括水平轧制速度控制和轧辊垂直轧制速度控制;水平轧制速度控制:以厚区轧制速度轧制带材的厚区;在过渡区近点A开始降低轧制速度,到过渡区起点B时把轧制速度降低到VB;在过渡区时,根据过渡区曲线方程和秒流量相等原理计算出过渡区水平轧制速度;出过渡区终点C后,开始升速轧制,到过渡区远点D时把轧制速度上升到薄区轧制速度,开始轧制薄区。轧辊垂直轧制速度控制:在轧制带材的厚区时,轧辊的垂直轧制速度为0;当轧制完厚区,轧件到达过渡区起点B时,轧辊开始压下,过渡区垂直轧制速度为Vdy(x);当Vdy(x)到达最大点Q1后开始减速,当到达过渡区终点C点时,Vdy(x)减到零,周期性重复上述步骤。

    基于案例推理的轧后冷却长期自学习方法

    公开(公告)号:CN102284517A

    公开(公告)日:2011-12-21

    申请号:CN201110181061.9

    申请日:2011-06-30

    Applicant: 东北大学

    Abstract: 一种基于案例推理的轧后冷却长期自学习方法,属于轧制技术领域。该方法按如下步骤进行:步骤1:案例的构造;步骤2:案例的检索;步骤3:案例的重用;步骤4:案例的修正。本发明的优点:本发明基于现场大量生产数据,从如何有效利用经验知识入手,通过案例构造、案例检索、案例重用、案例修正等案例推理技术对控制冷却数学模型中的长期自学习系数进行决策。该方法对已轧过的钢种规格,能有效地避免头部过冷现象,同时能显著提高板带头部终冷温度的模型设定精度。本发明可使轧后冷却模型具有随工况变化的自适应能力,能显著提高模型的头部设定精度。

    一种采用板带轧制中卷径测量装置测量卷径并控制卷取张力的方法

    公开(公告)号:CN101362165B

    公开(公告)日:2011-04-27

    申请号:CN200810013463.6

    申请日:2008-09-28

    Applicant: 东北大学

    Abstract: 本发明为一种板带轧制中卷径测量装置及卷取张力的方法,包括PLC、ET200M远程I/O和激光测距仪,激光测距仪通过双绞线分别与PLC和ET200M远程I/O相连,卷取张力控制方法包括:步骤一:开始,并输入测距仪卷筒中心的距离L0;步骤二:放置带卷在卷筒上,读出测距仪到带材的距离L;步骤三:根据公式D=2(L0-L)计算实际卷径D;步骤四:测试各个转速点的摩擦转矩和系统飞轮矩;步骤五:计算设定张力转矩MF、动态加减速转矩MD、弯曲转矩、摩擦转矩MM、总设定转矩M;步骤六:总设定转矩MD发送到传动装置。本发明能够精确的测量实际卷径,不受其它因素干扰,具有较高的张力控制精度,已在某1900mm铝带冷轧机上投入使用,其张力控制精度静态小于1%,动态小于2%。

    一种中厚板液压滚切剪的控制方法和装置

    公开(公告)号:CN101323033B

    公开(公告)日:2011-04-27

    申请号:CN200810012268.1

    申请日:2008-07-11

    Applicant: 东北大学

    Abstract: 一种中厚板液压滚切剪的控制方法和装置,属于轧钢自动控制技术领域,包括对左液压缸和右液压缸的控制,将左液压缸的实际位移曲线与左液压缸和右液压缸的理论位移曲线之差进行比较得出右液压缸新的设定位移曲线;将计算出右液压缸的设定位移曲线与右液压缸的实际位移曲线组成独立的闭环控制,将右液压缸设定位移曲线作为设定值,右液压缸的实际位移曲线作为反馈值,将设定值和反馈值输入位置PID控制器中,通过控制比例伺服阀的开口使右液压缸的实际位移曲线接近右液压缸设定位移曲线。本发明有效的解决了左液压缸和右液压缸实际位移曲线与理论位移曲线相差较大的问题,既有较快的响应速度,又具有较高的控制精度,提高了板材产品的剪切质量。

    一种中厚板层流冷却控制方法

    公开(公告)号:CN101433919B

    公开(公告)日:2010-09-29

    申请号:CN200810012350.4

    申请日:2008-07-17

    Applicant: 东北大学

    Abstract: 一种中厚板层流冷却控制方法,属于轧钢自动控制技术领域,包括以下步骤,(1)计算b1=K/T1;a1,b1为系数;(2)根据钢板跟踪的样本长度,确定冷却系统采样样本的纯滞后时间;(3)取积分调节器的消除率m;(4)k时刻样本的平均温差Δw(k)=w*(k)-w(k);(5)计算补偿器的输入(6)计算反馈调节的输入;(7)总的控制量为:i=1,2,3……,X=a,b,c……,a、b、c……分别为第一、二、三……段集管流量控制量和总控制量之比;循环反馈到下一组集管,直到每组集管的控制量之和等于总的流量控制量要求为止,控制器的控制量传递给流量调节阀,通过控制流量调节阀的开度,调节集管的出水量。该方法有非常快的响应速度,能很好地消除反馈控制所特有的大滞后问题。

    一种快速高精度板带轧制过程自动控制厚度的方法

    公开(公告)号:CN100369683C

    公开(公告)日:2008-02-20

    申请号:CN200610045735.1

    申请日:2006-01-24

    Applicant: 东北大学

    Abstract: 本发明为一种快速高精度板带轧制监控AGC的方法,包括以下步骤:①输入轧制系统及带钢相关数据,这些数据包括:轧机的刚度系数M、带钢塑性系数Q、测厚仪离轧机轧辊中心线的距离Lg;②确定厚控对象的比例系数K,K=M/(M+Q);③设定样本跟踪长度Ls=Lg/n;④取积分调节器的消除率a;⑤计算机将测厚仪对每一个指定样本长度Ls(i)的厚差Δh实测值进行多点采集,并通过计算确定i时刻样本的平均厚差Δh(i);⑥计算轧机的辊缝附加值,第i时刻的控制率ΔS(i)由如下的递推公式计算:△S(i)=(1-α)△S(i-1)+α△S(i-n-1)+α(△h(i))/k。本发明既有非常快的响应速度,又具有较高的静态控制精度,且在测厚仪的测量精度满足要求的前提下,其厚度控制精度高于1%。

    一种无缝钢管的在线冷却方法

    公开(公告)号:CN1951589A

    公开(公告)日:2007-04-25

    申请号:CN200610134324.X

    申请日:2006-11-21

    Applicant: 东北大学

    Abstract: 本发明涉及一种无缝钢管的在线冷却方法,属于轧钢技术领域,该方法采用斜锥形辊道,辊道轴向与无缝钢管前进方向成5~85°角度,使得无缝钢管以螺旋方式前进,开通冷却区域的冷却水喷向钢管,对无缝钢管进行冷却。由于采用斜锥形辊道,使钢管螺旋式前进,即保证钢管向前运行,又使其沿周向转动,周向的转动有利于周向的均匀冷却,并且换热快,从而保证冷却后不发生弯曲变形。本发明方法可用于无缝钢管的在线冷却。

Patent Agency Ranking