-
公开(公告)号:CN108982624B
公开(公告)日:2020-03-24
申请号:CN201810524154.9
申请日:2018-05-28
Applicant: 桂林电子科技大学
IPC: G01N27/327 , G01N33/569
Abstract: 本发明公开了一种聚吡咯@二茂铁/金纳米粒子复合材料,采用原位聚合的方法将二茂铁包覆在聚吡咯纳米球内,然后采用静电吸附的方法在聚吡咯‑二茂铁复合材料的表面吸附金纳米粒子。其制备方法包括以下步骤:1)聚吡咯@二茂铁复合材料的制备;2)金纳米粒子溶液的制备;3)聚吡咯@二茂铁/金纳米粒子复合材料的制备。用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明还具有操作简单、成本低廉、使用方便、灵敏度高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。
-
公开(公告)号:CN110880425A
公开(公告)日:2020-03-13
申请号:CN201911162052.8
申请日:2019-11-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种形貌稳定可控的核壳纳米针状复合材料,其微观结构为密集排列的纳米针结构负载在泡沫镍上,纳米针结构为壳核结构,壳核结构中,核的成分为CuCo2S4,壳的成分为CoMoO4,以Co(NO3)2·6H2O、Cu(NO3)2·3H2O、CO(NH2)2、Na2MoO4·2H2O和可溶性硫化物为起始原料,经水热反应和煅烧制得。其制备方法包括以下步骤:1)被修饰的泡沫镍的制备;2)CuCo2S4@泡沫镍的制备;3)CuCo2S4@CoMoO4@泡沫镍的制备;4)CuCo2S4@CoMoO4@泡沫镍的煅烧。作为超级电容器电极材料的应用,在0-0.4V范围内充放电,在放电电流密度为0.5A/g时,比电容为2000-2100F/g。本发明的优点包括:1、引入Cu有效控制材料形貌;2、通过控制硫化时间控制材料形貌;3、通过泡沫镍基体实现了紧密排列的核壳纳米针结构,大幅提高了材料的比电容量和循环稳定性。
-
公开(公告)号:CN110491684A
公开(公告)日:2019-11-22
申请号:CN201910880354.2
申请日:2019-09-18
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种针状花钴镍双金属氢氧化物复合材料及其制备方法和应用,制备方法为:以苝-3,4,9,10-四羧酸二酐煅烧获得海绵状碳作为基体材料,加入硝酸钴、硝酸镍和尿素,经水热反应得到钴镍双金属氢氧化物,并经原位反应负载于基体碳材料表面,最终得到复合材料。材料作为超级电容器电极材料的应用,在6M KOH溶液下,在0-0.45V的窗口电压范围内进行充放电,在放电电流密度为1A/g时,比电容可以达到600-750F/g。本发明以海绵状碳作为基体材料,提高了材料的导电性和稳定性;针状花钴镍双金属氢氧化物负载于基体材料表面,提高了材料的电性能,具有制备工艺简单,原材料廉价,适于量产;电化学性能良好,可用于超级电容器的电极材料。
-
公开(公告)号:CN110415991A
公开(公告)日:2019-11-05
申请号:CN201910730891.9
申请日:2019-08-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料,由氧化石墨烯与硝酸钴、硝酸镍、尿素进行溶剂热反应制得氧镍钴负载的氧化石墨烯前驱体材料,再进行低温煅烧制得,其中,所得材料呈珊瑚状,钴元素以Co3O4,镍元素以NiO形式均匀地负载在氧化石墨烯表面。其制备方法包括以下步骤:1)溶剂热法制备镍钴负载的氧化石墨烯前驱体复合材料;2)珊瑚状钴镍氧化物/氧化石墨烯复合材料的制备。作为超级电容器电极材料的应用,在-0.2-0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为800-900 F/g。本发明通过氧化石墨烯诱导钴和Co3O4和NiO的自组装生长,获得珊瑚状微观形貌;实现两种金属之间的协同作用,大幅提高材料的比电容。
-
公开(公告)号:CN107546039B
公开(公告)日:2019-06-04
申请号:CN201710686777.1
申请日:2017-08-11
Applicant: 桂林电子科技大学
CPC classification number: Y02E60/13
Abstract: 本发明公开了一种锶掺杂含氮多孔碳材料,由葡萄糖、氨基脲、含锶无机盐和还原剂,经水热反应和处理后,加入碱性无机物溶液煅烧活化和处理后制得,其比表面积范围在2000~2485 m2 g‑1,平均孔径分布在1.178‑1.232 nm,且微孔含量超过92%。制备步骤包括:1)含锶前驱体的制备;2)含锶前驱体的活化;3)含锶前驱体的后处理。本发明材料作为超级电容器电极材料,在电流密度为0.5 A g‑1时,比电容值范围在319~424 F g‑1,具有良好的循环稳定性。本发明中锶的掺杂量大幅减少,同时提高了材料的比表面积,调控了孔径分布,有利于电子传输和电解液输运,并且提供赝电容;制备工艺简单,有利于实现批量生产,在超级电容器、燃料电池等领域具有良好的应用前景。
-
公开(公告)号:CN109755033A
公开(公告)日:2019-05-14
申请号:CN201910175392.8
申请日:2019-03-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种碳纤维负载钴氧化物复合材料,原料为聚乙烯吡咯烷酮(PVP)、乙酸钴和溶剂DMF,通过先进行静电纺丝获得前驱体,再进行高温煅烧的两步碳化法制得,所得复合材料中,碳元素以碳纤维结构存在,其直径为0.1-0.5微米,钴元素以氧化物形式均匀负载在碳纤维内。其制备方法包括以下步骤:1)静电纺丝法制备前驱体;2)高温煅烧制备碳纤维负载钴氧化物复合材料。作为超级电容器电极材料的应用,在0-0.55V范围内充放电,在放电电流密度为1 A/g时,比电容为210-300 F/g。具有原料相容性好,毒性低,制备条件温和,绿色环保的优点;并且静电纺丝技术具有易操作、低成本、性能稳定,适合大批量的制备,在超级电容器领域具有广阔的应用前景。
-
公开(公告)号:CN109243845A
公开(公告)日:2019-01-18
申请号:CN201811238475.9
申请日:2018-10-23
Applicant: 桂林电子科技大学
Abstract: 本发明涉及一种立方晶Co3O4掺杂石墨烯多孔碳复合材料的制备及应用,制备采用三羟甲基氨基甲烷缓冲溶液来溶解盐酸多巴胺和分散氧化石墨烯混合,通过调节pH值,得到聚多巴胺修饰的石墨烯,然后将其与溶有聚乙二醇6000的硝酸钴溶液混合搅拌,再将混合物经水热法反应,然后过滤、洗涤、干燥后高温煅烧等处理制得。该材料具有以下优点:聚多巴胺在石墨烯表面修饰并还原其表面的氧化基团,使石墨烯具有良好的分散性和亲水能力;采用碳化法和水热法,工艺简单、成本低;立方晶Co3O4掺杂石墨烯多孔碳复合材料用作超级电容器电极材料的应用,在-0.1-0.4V范围内充放电,在放电电流密度为1A/g时,比电容可以达到600-1000F/g,且具有优异的电化学特性和化学稳定性。
-
公开(公告)号:CN107578928B
公开(公告)日:2019-01-11
申请号:CN201710810218.7
申请日:2017-09-11
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于柿子单宁吸附的镍、钴掺杂的多孔碳复合材料,由柿子单宁固化材料吸附了Co、Ni离子后,进行高温煅烧制得。以吸附了镍、钴的固化柿子单宁材料为前驱体,采用一步煅烧法,将镍、钴氧化物均匀地分散在多孔碳的孔道内。其制备方法包括:1)将柿子单宁与胶原纤维溶于入水中反应,然后将戊二醛溶液逐滴加入到产物中,反应、处理,得到固化柿子单宁粉末;2)将固化柿子单宁粉末加入NiSO4和CoSO4的混合溶液中反应,处理,得到前驱体;3)将前驱体煅烧即可。作为超级电容器电极材料的应用,比电容为400~500F/g。本发明不仅表现出双电层电容性能,而且表现出法拉第电容性能,因而用于超级电容器的电极材料表现出良好的性能。
-
公开(公告)号:CN108520828A
公开(公告)日:2018-09-11
申请号:CN201810280474.4
申请日:2018-04-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种高度石墨化的二维多洞的碳纳米片,由酚醛树脂的合成原料和醋酸钙混合,制得掺杂有醋酸钙的酚醛树脂复合物,再经过高温碳化、酸洗、活化后得到。碳纳米片的直径为1-2μm,孔洞为直径为20-100 nm。其制备方法包括以下步骤:1)酚醛树脂和醋酸钙复合物的制备;2)高度石墨化的二维多洞的碳纳米片的制备。作为超级电容器电极材料的应用,在-1.0~0 V范围内充放电,在放电电流密度为1 A/g时,比电容可以达到200-300 F/g。本发明制备工艺简单、成本低、效果好。采用钙代替过渡金属作为催化剂,易除去,提高了材料的导电性和电解质离子的迁移率;表现出优良的电化学特性和化学稳定性,在超级电容器材料领域具有广阔的应用前景。
-
公开(公告)号:CN107673324A
公开(公告)日:2018-02-09
申请号:CN201711069730.7
申请日:2017-11-03
Applicant: 桂林电子科技大学
IPC: C01B32/162
Abstract: 本发明公开了一种氮掺杂的碳纳米管,由硝酸钴和含氮高分子树脂混合,采用硝酸钴作为催化剂,进行高温碳化,得到氮掺杂的碳纳米管,其直径为10-15 nm,长度为200-300 nm,氮元素的含量为6-8 wt%。其制备方法包括骤:1)三聚氰胺树脂的制备;2)硝酸钴-三聚氰胺树脂粉末的制备;3)氮掺杂的碳纳米管的制备。本发明采用一步碳化法,制备方法简单;安全性好,在氮气条件下制备;所采用的催化剂价格便宜且具有高活性,在碳纳米管的制备领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-