-
公开(公告)号:CN110415991B
公开(公告)日:2021-05-14
申请号:CN201910730891.9
申请日:2019-08-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料,由氧化石墨烯与硝酸钴、硝酸镍、尿素进行溶剂热反应制得氧镍钴负载的氧化石墨烯前驱体材料,再进行低温煅烧制得,其中,所得材料呈珊瑚状,钴元素以Co3O4,镍元素以NiO形式均匀地负载在氧化石墨烯表面。其制备方法包括以下步骤:1)溶剂热法制备镍钴负载的氧化石墨烯前驱体复合材料;2)珊瑚状钴镍氧化物/氧化石墨烯复合材料的制备。作为超级电容器电极材料的应用,在‑0.2‑0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为800‑900 F/g。本发明通过氧化石墨烯诱导钴和Co3O4和NiO的自组装生长,获得珊瑚状微观形貌;实现两种金属之间的协同作用,大幅提高材料的比电容。
-
公开(公告)号:CN108831759B
公开(公告)日:2020-03-10
申请号:CN201810666436.2
申请日:2018-06-26
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于石墨烯/壳聚糖多孔碳复合材料,由氧化石墨烯与壳聚糖,采用两步煅烧法,吸附Co、Ni、B后再进行高温煅烧,将镍、钴氧化物均匀地分散在掺杂硼、氮的多孔碳的孔道内。其制备方法包括以下步骤:1)氮掺杂氧化石墨烯/壳聚糖粉末的制备;2)前驱体的制备;3)石墨烯/壳聚糖多孔碳复合材料的制备。作为超级电容器电极材料的应用,在‑0.1‑0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为800‑900 F/g。本发明不仅表现出双电层电容性能,而且表现出法拉第电容性能,因而用于超级电容器的电极材料表现出良好的性能。
-
公开(公告)号:CN107804836A
公开(公告)日:2018-03-16
申请号:CN201711081630.6
申请日:2017-11-07
Applicant: 桂林电子科技大学
IPC: C01B32/184
Abstract: 本发明公开了一种基于生物高聚物的三维石墨烯,由生物高聚物吸附了Co离子后,再进行高温碳化后,经浓硝酸洗涤后得到,其比表面积为300-400 m2/g,所述的生物高聚物由柿子单宁和壳聚糖制备的固化柿子单宁,采用Co离子作为催化剂,一步碳化法制备。其制备方法包括以下步骤:1)固化柿子单宁粉末的制备;2)前驱体的制备;3)三维石墨烯的制备。本发明采用一步碳化法,工艺简单,产品性能稳定,适合大批量的制备,而且后处理工艺简单,在碳功能材料领域具有广阔的应用前景。
-
公开(公告)号:CN110540186B
公开(公告)日:2022-11-29
申请号:CN201910850672.4
申请日:2019-09-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种蚕茧状C@NiCo2O4复合材料,以硝酸钴、硝酸镍、尿素和PVP为原料,以DMF为溶剂,经静电纺丝法固化得到Co‑C前驱体,再经剧烈搅拌油浴法制得。所得材料中,碳元素以直径为0.5‑1微米的碳纤维结构存在,作为蚕茧状的核心;NiCo2O4作为蚕茧状的外层结构,包覆在碳纤维的表面形成蚕茧状C@NiCo2O4复合材料。其制备方法包括以下步骤:1)配制静电纺丝原液;2)静电纺丝法制备Co‑C前驱体;3)剧烈搅拌油浴法制备蚕茧状C@NiCo2O4复合材料。作为超级电容器电极材料的应用,在0.1‑0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为1900‑2000F/g。本发明的剧烈搅拌油浴法,操作简单,耗时短,便捷无危险的特点;原料相容性好,毒性低,制备条件温和,在超级电容器领域具有广阔的应用前景。
-
公开(公告)号:CN111785526B
公开(公告)日:2022-04-26
申请号:CN202010522101.0
申请日:2020-06-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料,以乙酸镍、乙酸钴、尿素、硫脲为原料,制备NF/NiCo2S4纳米针阵列材料,再以聚吡咯为导电聚合物,通过黏结剂和固化剂,制得聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料,其中,纳米针状结构具有壳‑核结构,核结构为NiCo2S4,壳结构为聚吡咯。其制备方法包括以下步骤:1)NF/NiCo2O4纳米针阵列材料的制备;2)NF/NiCo2S4纳米针阵列材料的制备;3)聚吡咯包覆Ni‑Co‑S纳米针阵列复合材料的制备。作为超级电容器电极材料的应用,窗口电压为0‑0.5V,在放电电流密度为1A/g时,比电容为1800‑1900F/g。泡沫镍载体表面生长的纳米针阵列结构规整有序,比表面积大,利于电子的传输;采用直接滴覆的方法实现导电聚合物的包覆,有效提高电化学性能。
-
公开(公告)号:CN111785526A
公开(公告)日:2020-10-16
申请号:CN202010522101.0
申请日:2020-06-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了聚吡咯包覆Ni-Co-S纳米针阵列复合材料,以乙酸镍、乙酸钴、尿素、硫脲为原料,制备NF/NiCo2S4纳米针阵列材料,再以聚吡咯为导电聚合物,通过黏结剂和固化剂,制得聚吡咯包覆Ni-Co-S纳米针阵列复合材料,其中,纳米针状结构具有壳-核结构,核结构为NiCo2S4,壳结构为聚吡咯。其制备方法包括以下步骤:1)NF/NiCo2O4纳米针阵列材料的制备;2)NF/NiCo2S4纳米针阵列材料的制备;3)聚吡咯包覆Ni-Co-S纳米针阵列复合材料的制备。作为超级电容器电极材料的应用,窗口电压为0-0.5V,在放电电流密度为1A/g时,比电容为1800-1900F/g。泡沫镍载体表面生长的纳米针阵列结构规整有序,比表面积大,利于电子的传输;采用直接滴覆的方法实现导电聚合物的包覆,有效提高电化学性能。
-
公开(公告)号:CN107804836B
公开(公告)日:2020-06-05
申请号:CN201711081630.6
申请日:2017-11-07
Applicant: 桂林电子科技大学
IPC: C01B32/184
Abstract: 本发明公开了一种基于生物高聚物的三维石墨烯,由生物高聚物吸附了Co离子后,再进行高温碳化后,经浓硝酸洗涤后得到,其比表面积为300‑400 m2/g,所述的生物高聚物由柿子单宁和壳聚糖制备的固化柿子单宁,采用Co离子作为催化剂,一步碳化法制备。其制备方法包括以下步骤:1)固化柿子单宁粉末的制备;2)前驱体的制备;3)三维石墨烯的制备。本发明采用一步碳化法,工艺简单,产品性能稳定,适合大批量的制备,而且后处理工艺简单,在碳功能材料领域具有广阔的应用前景。
-
公开(公告)号:CN110880425A
公开(公告)日:2020-03-13
申请号:CN201911162052.8
申请日:2019-11-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种形貌稳定可控的核壳纳米针状复合材料,其微观结构为密集排列的纳米针结构负载在泡沫镍上,纳米针结构为壳核结构,壳核结构中,核的成分为CuCo2S4,壳的成分为CoMoO4,以Co(NO3)2·6H2O、Cu(NO3)2·3H2O、CO(NH2)2、Na2MoO4·2H2O和可溶性硫化物为起始原料,经水热反应和煅烧制得。其制备方法包括以下步骤:1)被修饰的泡沫镍的制备;2)CuCo2S4@泡沫镍的制备;3)CuCo2S4@CoMoO4@泡沫镍的制备;4)CuCo2S4@CoMoO4@泡沫镍的煅烧。作为超级电容器电极材料的应用,在0-0.4V范围内充放电,在放电电流密度为0.5A/g时,比电容为2000-2100F/g。本发明的优点包括:1、引入Cu有效控制材料形貌;2、通过控制硫化时间控制材料形貌;3、通过泡沫镍基体实现了紧密排列的核壳纳米针结构,大幅提高了材料的比电容量和循环稳定性。
-
公开(公告)号:CN110415991A
公开(公告)日:2019-11-05
申请号:CN201910730891.9
申请日:2019-08-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料,由氧化石墨烯与硝酸钴、硝酸镍、尿素进行溶剂热反应制得氧镍钴负载的氧化石墨烯前驱体材料,再进行低温煅烧制得,其中,所得材料呈珊瑚状,钴元素以Co3O4,镍元素以NiO形式均匀地负载在氧化石墨烯表面。其制备方法包括以下步骤:1)溶剂热法制备镍钴负载的氧化石墨烯前驱体复合材料;2)珊瑚状钴镍氧化物/氧化石墨烯复合材料的制备。作为超级电容器电极材料的应用,在-0.2-0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为800-900 F/g。本发明通过氧化石墨烯诱导钴和Co3O4和NiO的自组装生长,获得珊瑚状微观形貌;实现两种金属之间的协同作用,大幅提高材料的比电容。
-
公开(公告)号:CN109755033A
公开(公告)日:2019-05-14
申请号:CN201910175392.8
申请日:2019-03-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种碳纤维负载钴氧化物复合材料,原料为聚乙烯吡咯烷酮(PVP)、乙酸钴和溶剂DMF,通过先进行静电纺丝获得前驱体,再进行高温煅烧的两步碳化法制得,所得复合材料中,碳元素以碳纤维结构存在,其直径为0.1-0.5微米,钴元素以氧化物形式均匀负载在碳纤维内。其制备方法包括以下步骤:1)静电纺丝法制备前驱体;2)高温煅烧制备碳纤维负载钴氧化物复合材料。作为超级电容器电极材料的应用,在0-0.55V范围内充放电,在放电电流密度为1 A/g时,比电容为210-300 F/g。具有原料相容性好,毒性低,制备条件温和,绿色环保的优点;并且静电纺丝技术具有易操作、低成本、性能稳定,适合大批量的制备,在超级电容器领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-