一种超高温陶瓷复合材料及制备方法

    公开(公告)号:CN119430952A

    公开(公告)日:2025-02-14

    申请号:CN202411690830.1

    申请日:2024-11-25

    Abstract: 本发明公开一种超高温陶瓷复合材料及制备方法,包括步骤一、悬浮液制备,步骤二、混粉、按照质量比为1:2.5~3.5的超高温陶瓷粉末和烧结助剂混合均匀,得到混合物A,步骤三、球磨湿混,得到混合物B,步骤四、干燥、将混合物B在真空干燥箱中干燥,得到干燥粉末粉体C,步骤六、烧结、将预压后的石墨模具放入烧结炉腔内烧结得到超高温陶瓷复合材料;本发明通过石墨烯特性与超高温陶瓷粉末混合并致密烧结时,在烧结初期引起陶瓷颗粒重排,利用石墨烯的包裹机制明显抑制晶粒生长,在烧结后期因其碳结构起到烧结作用,通过石墨烯的物理特性有效提高陶瓷粉体的导热性,使复合粉体在烧结过程中受热更均匀。

    一种分段式凸轮轴的装配工具
    2.
    发明公开

    公开(公告)号:CN116900978A

    公开(公告)日:2023-10-20

    申请号:CN202311078971.3

    申请日:2023-08-25

    Abstract: 本发明属于机械装配件技术领域,提出一种分段式凸轮轴的装配工具,包括:第一横杆的前端相对设置有两第一纵杆,两第一纵杆通过第一驱动件相对于第一横杆相向或相反移动,第一横杆的后端固接有沿远端延伸的支撑杆的一端;位于第一纵杆顶端前侧且与第一纵杆转动抬升的固定板,第一纵杆的顶端后侧设置有支撑座,第一纵杆上设置有第二驱动件,支撑座通过第二驱动件与固定板滑动配合以构成加固区间,加固区间用于支撑单段凸轮轴;相对于第一横杆升降的第二横杆,第二横杆的前端设置有挤压件,挤压件用于与设置在加固区间内的单段凸轮轴压力接触。本发明能够提高对单段凸轮轴的支撑稳定性,提高装配效率,保障装配单段凸轮轴时的精准度。

    一种基于视觉分析的凸轮轴表面损伤检测系统

    公开(公告)号:CN117315365A

    公开(公告)日:2023-12-29

    申请号:CN202311331476.9

    申请日:2023-10-13

    Abstract: 本发明公开了一种基于视觉分析的凸轮轴表面损伤检测系统,包括:数据收集子系统,用于收集历史凸轮轴表面影像数据;数据处理子系统,用于对所述历史凸轮轴表面影像数据进行处理,获得处理图像数据集;模型构建子系统,用于构建机器视觉模型,通过所述处理图像数据集对所述机器视觉模型进行训练,获得损伤检测模型;结果生成子系统,用于获取实时凸轮轴表面影像数据,将所述实时凸轮轴表面影像数据输入至所述损伤检测模型中进行计算,获得检测结果。本发明通过通过视觉分析技术对凸轮轴进行处理,可以提取图像中微小的细节和特征,并通过机器学习算法进行准确的分类和检测。这使得可以检测到凸轮轴表面的微小损伤,提高了检测的灵敏度和精度。

    一种装配式凸轮轴压装机
    6.
    发明公开

    公开(公告)号:CN117140433A

    公开(公告)日:2023-12-01

    申请号:CN202311250832.4

    申请日:2023-09-26

    Abstract: 本发明属于装配式凸轮轴装配技术领域,提供一种装配式凸轮轴压装机,包括:安装平台;移动平台上设置有夹持件,钢管的一端和夹持件可拆卸连接且钢管位于移动平台底面中心位置处;转动盘转动连接在安装平台顶面中心位置处,转动盘顶面固接有限位架,限位架内盛放有若干凸轮,若干凸轮的内孔相互重合,转动盘与移动平台上分别开设有通孔,两通孔与若干凸轮的内孔相互重合,移动平台带动钢管移动并贯穿若干凸轮内孔以及两通孔。本发明实现了:通过移动平台带动钢管贯穿若干凸轮以及转动盘后依次对凸轮固定,无需钢管重复抬升并将每一凸轮套设在钢管上,同时设置的转动盘实现每一凸轮安装角度的准确性,提高了装配式凸轮轴的安装效率。

    一种液压胀形试件成形质量控制方法

    公开(公告)号:CN116618510A

    公开(公告)日:2023-08-22

    申请号:CN202310662648.4

    申请日:2023-06-06

    Abstract: 本发明公开了一种液压胀形试件成形质量控制方法,包括以下步骤:设置标准试件的胀形信息和初始胀形信息;利用所述标准试件的胀形信息和所述初始胀形信息,基于模具获取标准形态的胀形试件,所述模具为钢化玻璃与金刚石的复合模具;基于所述模具对所述标准形态的胀形试件进行检测,并基于所述标准试件的胀形信息实现对液压胀形试件成形质量的控制。本发明通过计算在空气中光线传播时间、钢化玻璃传播时间、金刚石中传播时间确定胀形件距离,通过这样的方式获取胀形高度以及轴向进给量,可以实时观测到试件的胀形高度,掌握胀形情况,从而实现质量控制。

    一种重结晶后金属屈服强度确定方法

    公开(公告)号:CN116595792A

    公开(公告)日:2023-08-15

    申请号:CN202310622145.4

    申请日:2023-05-30

    Abstract: 本发明公开了一种重结晶后金属屈服强度确定方法,包括以下步骤:获取样本晶粒尺寸和屈服强度实验值,构建初始重结晶后金属屈服强度确定模型;通过所述样本晶粒尺寸和所述屈服强度实验值对所述初始重结晶后金属屈服强度确定模型进行训练,获取重结晶后金属屈服强度确定模型;通过所述图像中每条边中点与质心距离的平均值获取待测材料微观组织的图像中每个晶体的尺寸,将所述每个晶体的尺寸输入所述重结晶后金属屈服强度确定模型,获取所述待测材料的屈服强度。本发明提高屈服强度结果的准确度。

    一种用于3D打印的高熵陶瓷粉末及其制备方法

    公开(公告)号:CN119462081A

    公开(公告)日:2025-02-18

    申请号:CN202411703473.8

    申请日:2024-11-26

    Abstract: 本发明公开一种用于3D打印的高熵陶瓷粉末及其制备方法,涉及3D打印材料技术领域,其中高熵陶瓷粉末包括以下原料:复合陶瓷粉末、复合金属氧化物、热塑性塑料粉末、粘接剂、偶联剂和表面改性剂;本发明以复合陶瓷粉末为主料,以复合金属氧化物为辅料,并添加热塑性塑料粉末作为填充料来制备出的高熵陶瓷粉末,散装密度高,颗粒均匀,硬度和强度较高,使制备出的3D打印产品具备良好的韧性和冲击强度,且由于含有多种元素,导致3D打印出的高熵陶瓷具有较高的混合熵,助于稳定材料的晶体结构,提高其物理性能,另外制备过程中通过对球磨混合料进行分段煅烧,可以有效地改善陶瓷粉料的微观结构,从而提高后续3D打印陶瓷产品的机械强度。

Patent Agency Ranking