-
公开(公告)号:CN105182801A
公开(公告)日:2015-12-23
申请号:CN201510717204.1
申请日:2015-10-29
Applicant: 哈尔滨工业大学
IPC: G05B17/02
Abstract: 一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法,本发明涉及PD控制方法。本发明是要解决控制策略的制定较为简单,控制精度有待提高、没有考虑系统的不确定性挠性附件的影响、没有考虑平台的结构非线性以及控制算法的设计过程具有任意性的问题而提出的一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法。该方法是通过一、建立Stewart平台的动力学模型;二、建立Stewart平台的六个执行机构的动力学模型;三、得到Stewart平台的状态空间;四、确定观测器对系统状态的观测误差为收敛的观测误差;五、设计基于扩张观测器的PD控制器等步骤实现的。本发明应用于PD控制方法领域。
-
公开(公告)号:CN104865829A
公开(公告)日:2015-08-26
申请号:CN201510137004.9
申请日:2015-03-26
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 多机器人系统分布式自适应神经网络连续跟踪控制方法,属于机器人系统控制领域。现有的多机器人系统的协调跟踪控制方法使多机器人系统存在参数不确定性和外界干扰的问题。一种多机器人系统分布式自适应神经网络连续跟踪控制方法,首先,在仅有部分跟随者可以获得动态领航者状态信息的情况下,为使所有跟随者都可获得动态领航者的状态信息,在存在通讯时延的限制下设计分布式观测器。然后,考虑系统存在参数不确定性和外界干扰,利用两个神经网络设计的分布式自适应跟踪控制表达式进行控制,使逼近误差趋于零。此外,分布式自适应跟踪控制表达式的控制算法为连续控制,因此不会给系统带来抖振且具有更大的实际应用价值。最后,仿真实验验证了控制算法的有效性。
-
公开(公告)号:CN105068546A
公开(公告)日:2015-11-18
申请号:CN201510465443.2
申请日:2015-07-31
Applicant: 哈尔滨工业大学
Abstract: 一种卫星编队相对轨道自适应神经网络构形包含控制方法,本发明涉及卫星编队相对轨道自适应神经网络构形包含控制方法。本发明的目的是为了解决现有技术中未考虑系统存在非线性不确定性和外界干扰的情况、未考虑卫星编队系统动力学存在广义干扰情况、未考虑抖振现象以及信息全局可知带来的通讯负担的问题。通过以下技术方案实现的:步骤一、建立跟随星i的相对轨道动力学方程;步骤二、对步骤一中每一个跟随星设计分布式速度观测器;步骤三、根据跟随星i的相对轨道动力学方程和分布式速度观测器进行神经网络逼近;步骤四、根据步骤三得到的神经网络逼近结果,设计自适应神经网络构形包含控制算法。本发明应用于卫星领域。
-
公开(公告)号:CN107341578A
公开(公告)日:2017-11-10
申请号:CN201710612737.2
申请日:2017-07-25
Applicant: 哈尔滨工业大学
CPC classification number: G06Q10/047 , G06F17/18 , G06N3/126
Abstract: 基于遗传算法的空间碎片主动清除任务规划方法,涉及一种空间碎片主动清除任务规划方法。本发明为了解决现有的遗传算法的编码方式和交叉、变异操作容易导致空间碎片主动清除任务规划陷入局部最优的问题。本发明将任务规划的方法用到碎片抓捕路径优化问题上,首先针对平台的任务特点,设定碎片清除任务;然后将平台任务规划问题数学建模为旅行商城市路径最短问题。针对于空间碎片的特点分别设计了适用于机械臂抓捕方案的适应度函数以及适用于飞网和机械臂抓捕方案的适应度函数;并设定特定的遗传参数,采用遗传算法进行优化求解,能够很快的实现收敛,规划出空间碎片的抓捕路径。本发明适用于空间碎片主动清除任务规划。
-
公开(公告)号:CN106945020A
公开(公告)日:2017-07-14
申请号:CN201710352736.9
申请日:2017-05-18
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种空间双机械臂系统运动协调控制方法,属于空间机械臂技术领域,本发明为了解决目前还没有针对于双机械臂的空间机械臂系统,以及现有的空间机械臂系统未考虑到机械臂与卫星本体间的协调关系,跟踪误差较高的缺点,而提出一种空间双机械臂系统运动协调控制方法。一种空间双机械臂系统运动协调控制方法,包括:构建空间双机械臂系统的运动学方程以及动力学方程;根据机械臂的初始位姿以及末端位姿,对空间双机械臂系统进行轨迹规划;通过PD控制器对空间双机械臂系统轨迹进行跟踪控制。本发明适用于空间机械臂控制系统。
-
公开(公告)号:CN104865829B
公开(公告)日:2017-06-23
申请号:CN201510137004.9
申请日:2015-03-26
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 多机器人系统分布式自适应神经网络连续跟踪控制方法,属于机器人系统控制领域。现有的多机器人系统的协调跟踪控制方法使多机器人系统存在参数不确定性和外界干扰的问题。一种多机器人系统分布式自适应神经网络连续跟踪控制方法,首先,在仅有部分跟随者可以获得动态领航者状态信息的情况下,为使所有跟随者都可获得动态领航者的状态信息,在存在通讯时延的限制下设计分布式观测器。然后,考虑系统存在参数不确定性和外界干扰,利用两个神经网络设计的分布式自适应跟踪控制表达式进行控制,使逼近误差趋于零。此外,分布式自适应跟踪控制表达式的控制算法为连续控制,因此不会给系统带来抖振且具有更大的实际应用价值。最后,仿真实验验证了控制算法的有效性。
-
公开(公告)号:CN106945020B
公开(公告)日:2019-10-22
申请号:CN201710352736.9
申请日:2017-05-18
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种空间双机械臂系统运动协调控制方法,属于空间机械臂技术领域,本发明为了解决目前还没有针对于双机械臂的空间机械臂系统,以及现有的空间机械臂系统未考虑到机械臂与卫星本体间的协调关系,跟踪误差较高的缺点,而提出一种空间双机械臂系统运动协调控制方法。一种空间双机械臂系统运动协调控制方法,包括:构建空间双机械臂系统的运动学方程以及动力学方程;根据机械臂的初始位姿以及末端位姿,对空间双机械臂系统进行轨迹规划;通过PD控制器对空间双机械臂系统轨迹进行跟踪控制。本发明适用于空间机械臂控制系统。
-
公开(公告)号:CN105182801B
公开(公告)日:2017-10-03
申请号:CN201510717204.1
申请日:2015-10-29
Applicant: 哈尔滨工业大学
IPC: G05B17/02
Abstract: 一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法,本发明涉及PD控制方法。本发明是要解决控制策略的制定较为简单,控制精度有待提高、没有考虑系统的不确定性挠性附件的影响、没有考虑平台的结构非线性以及控制算法的设计过程具有任意性的问题而提出的一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法。该方法是通过一、建立Stewart平台的动力学模型;二、建立Stewart平台的六个执行机构的动力学模型;三、得到Stewart平台的状态空间;四、确定观测器对系统状态的观测误差为收敛的观测误差;五、设计基于扩张观测器的PD控制器等步骤实现的。本发明应用于PD控制方法领域。
-
公开(公告)号:CN105068546B
公开(公告)日:2017-06-16
申请号:CN201510465443.2
申请日:2015-07-31
Applicant: 哈尔滨工业大学
Abstract: 一种卫星编队相对轨道自适应神经网络构形包含控制方法,本发明涉及卫星编队相对轨道自适应神经网络构形包含控制方法。本发明的目的是为了解决现有技术中未考虑系统存在非线性不确定性和外界干扰的情况、未考虑卫星编队系统动力学存在广义干扰情况、未考虑抖振现象以及信息全局可知带来的通讯负担的问题。通过以下技术方案实现的:步骤一、建立跟随星i的相对轨道动力学方程;步骤二、对步骤一中每一个跟随星设计分布式速度观测器;步骤三、根据跟随星i的相对轨道动力学方程和分布式速度观测器进行神经网络逼近;步骤四、根据步骤三得到的神经网络逼近结果,设计自适应神经网络构形包含控制算法。本发明应用于卫星领域。
-
-
-
-
-
-
-
-