Abstract:
Body bias can be applied to optimize performance in a non-volatile storage system. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased or decreased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
A system and methods to find the threshold voltage distribution across a set of nonvolatile memory cells, such that embodiments may incorporate this distribution information into calculations that may change the read compare voltages used to read the memory cells, while ensuring adequate separation in read voltage between different data states at which the memory cells may be read.
Abstract:
Shifts in the apparent charge stored on a floating gate (or other charge storing element) of a non-volatile memory cell can occur because of the coupling of an electric field based on the charge stored in adjacent floating gates (or other adjacent charge storing elements). The problem occurs most pronouncedly between sets of adjacent memory cells that have been programmed at different times. To account for this coupling, the read process for a particular memory cell will provide compensation to an adjacent memory cell in order to reduce the coupling effect that the adjacent memory cell has on the particular memory cell.
Abstract:
A non-volatile storage system is disclosed that includes pairs of NAND strings (or other groupings of memory cells) in the same block being connected to and sharing a common bit line. To operate the system, two selection lines are used so that the NAND strings (or other groupings of memory cells) sharing a bit line can be selected at the block level. Both selection lines are connected to a selection gate for each of the NAND strings (or other groupings of memory cells) sharing the bit line. One set of embodiments avoid unwanted boosting during read operations by keeping the channels of the memory cells connected to word lines on the drain side of the selected word line biased at a fixed potential.
Abstract:
A system and methods to find the threshold voltage distribution across a set of nonvolatile memory cells, such that embodiments may incorporate this distribution information into calculations that may change the read compare voltages used to read the memory cells, while ensuring adequate separation in read voltage between different data states at which the memory cells may be read.
Abstract:
A non-volatile storage system is disclosed that includes pairs of NAND strings (or other groupings of memory cells) in the same block being connected to and sharing a common bit line. To operate the system, two selection lines are used so that the NAND strings (or other groupings of memory cells) sharing a bit line can be selected at the block level. Both selection lines are connected to a selection gate for each of the NAND strings (or other groupings of memory cells) sharing the bit line. One set of embodiments avoid unwanted boosting during read operations by keeping the channels of the memory cells connected to word lines on the drain side of the selected word line biased at a fixed potential.
Abstract:
A non-volatile storage system is disclosed that includes pairs of NAND strings (or other groupings of memory cells) in the same block being connected to and sharing a common bit line. To operate the system, two selection lines are used so that the NAND strings (or other groupings of memory cells) sharing a bit line can be selected at the block level. Both selection lines are connected to a selection gate for each of the NAND strings (or other groupings of memory cells) sharing the bit line. One set of embodiments avoid unwanted boosting during read operations by keeping the channels of the memory cells connected to word lines on the drain side of the selected word line biased at a fixed potential.
Abstract:
A set of reliability metrics is provided for use by an iterative probabilistic decoding process for non-volatile storage. A plurality of sense operations are performed on at least one set of non-volatile storage elements which are programmed to a plurality of programming states. A set of reliability metrics such as logarithmic likelihood ratios is provided based on the sense operations. The set of reliability metrics is can be used by an iterative probabilistic decoding process in determining a programming state of at least one non-volatile storage element based on at least one subsequent sense operation involving the at least one non-volatile storage element. The plurality of sense operations can be performed at different ages (e.g., number of program/erase cycles) of the at least one set of non-volatile storage elements and the set of reliability metrics can be based on an average over the different ages.
Abstract:
A three dimensional stacked non-volatile memory device comprises alternating dielectric layers and conductive layers in a stack, a plurality of bit lines below the stack, and a plurality of source lines above the stack. There is a separate source line for each bit line. Each source lines is connected to a different subset of NAND strings. Each bit line is connected to a different subset of NAND strings. Multiple data states are verified concurrently. Reading is performed sequentially for the data states. The data states are programmed concurrently with memory cells being programmed to lower data states having their programming slowed by applying appropriate source line voltages and bit line voltages.
Abstract:
A system and methods to find the threshold voltage distribution across a set of nonvolatile memory cells, such that embodiments may incorporate this distribution information into calculations that may change the read compare voltages used to read the memory cells, while ensuring adequate separation in read voltage between different data states at which the memory cells may be read.