Abstract:
A method of making a NAND string includes forming a tunnel dielectric over a semiconductor channel, forming a charge storage layer over the tunnel dielectric, forming a blocking dielectric over the charge storage layer, and forming a control gate layer over the blocking dielectric. The method also includes patterning the control gate layer to form a plurality of control gates separated by trenches, and reacting a first material with exposed sidewalls of the plurality of control gates to form self aligned metal-first material compound sidewall spacers on the exposed sidewalls of the plurality of control gates.
Abstract:
A method of making a monolithic three dimensional NAND string, including providing a stack of alternating first material layers and second material layers different from the first material layer over a substrate, the stack comprising at least one opening containing a charge storage material comprising a silicide layer, a tunnel dielectric on the charge storage material in the at least one opening, and a semiconductor channel on the tunnel dielectric in the at least one opening, selectively removing the second material layers without removing the first material layers from the stack and forming control gates between the first material layers.
Abstract:
Suspended charge storage regions are utilized for non-volatile storage to decrease parasitic interferences and increase charge retention in memory devices. Charge storage regions are suspended from an overlying intermediate dielectric material. The charge storage regions include an upper surface and a lower surface that extend in the row and column directions. The upper surface of the charge storage region is coupled to the overlying intermediate dielectric material. The lower surface faces the substrate surface and is separated from the substrate surface by a void. The charge storage region includes a first vertical sidewall and a second vertical sidewall that extend in the column direction and a third vertical sidewall and fourth vertical sidewall that extend in the row direction. The first, second, third, and fourth vertical sidewall are separated from neighboring features of the non-volatile memory by the void. The void may include a vacuum, air, gas, or a liquid.
Abstract:
Methods for preventing line collapse during the fabrication of NAND flash memory and other microelectronic devices that utilize closely spaced device structures with high aspect ratios are described. In some embodiments, one or more mechanical support structures may be used to provide lateral support between closely spaced device structures to prevent collapsing of the closely spaced device structures during an etching process (e.g., during a word line etch). In one example, during fabrication of a NAND flash memory, one or more mechanical support structures may be in place prior to performing a high aspect ratio word line etch or may be formed during the word line etch. In some cases, the one or more mechanical support structures may comprise portions of an inter-poly dielectric (IPD) layer that were in place prior to performing the word line etch.
Abstract:
A method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material over a substrate. The first material comprises an electrically insulating material and the second material comprises a semiconductor or conductor material. The method also includes etching the stack to form a front side opening in the stack, forming a blocking dielectric layer over the stack of alternating layers of a first material and a second material exposed in the front side opening, forming a semiconductor or metal charge storage layer over the blocking dielectric, forming a tunnel dielectric layer over the charge storage layer, forming a semiconductor channel layer over the tunnel dielectric layer, etching the stack to form a back side opening in the stack, removing at least a portion of the first material layers and portions of the blocking dielectric layer.
Abstract:
A method of making a monolithic three dimensional NAND string includes providing a stack of alternating insulating layers and control gate films over a major surface of a substrate. Each of the control gate films includes a middle layer located between a first control gate layer and a second control gate layer, the middle layer being a different material from the first and second control gate layers and from the insulating layers. The method also includes forming a front side opening in the stack, and forming a blocking dielectric, at least one charge storage region, a tunnel dielectric and a semiconductor channel in the front side opening in the stack.
Abstract:
A memory cell including a control gate located over a floating gate region. The floating gate region includes discrete doped semiconducting or conducting regions separated by an insulator and the discrete doped semiconducting or conducting regions have a generally cylindrical shape or a quasi-cylindrical shape.
Abstract:
A method of making a NAND string includes forming a tunnel dielectric over a semiconductor channel, forming a charge storage layer over the tunnel dielectric, forming a blocking dielectric over the charge storage layer, and forming a control gate layer over the blocking dielectric. The method also includes patterning the control gate layer to form a plurality of control gates separated by trenches, and reacting a first material with exposed sidewalls of the plurality of control gates to form self aligned metal-first material compound sidewall spacers on the exposed sidewalls of the plurality of control gates.
Abstract:
Methods for preventing line collapse during the fabrication of NAND flash memory and other microelectronic devices that utilize closely spaced device structures with high aspect ratios are described. In some embodiments, one or more mechanical support structures may be used to provide lateral support between closely spaced device structures to prevent collapsing of the closely spaced device structures during an etching process (e.g., during a word line etch). In one example, during fabrication of a NAND flash memory, one or more mechanical support structures may be in place prior to performing a high aspect ratio word line etch or may be formed during the word line etch. In some cases, the one or more mechanical support structures may comprise portions of an inter-poly dielectric (IPD) layer that were in place prior to performing the word line etch.
Abstract:
A memory cell including a control gate located over a floating gate region. The floating gate region includes discrete doped semiconducting or conducting regions separated by an insulator and the discrete doped semiconducting or conducting regions have a generally cylindrical shape or a quasi-cylindrical shape.