Abstract:
A semiconductor device includes a shielding wire formed across a semiconductor die and an auxiliary wire supporting the shielding wire, thereby reducing the size of a package while shielding the electromagnetic interference generated from the semiconductor die. In one embodiment, the semiconductor device includes a substrate having at least one circuit device mounted thereon, a semiconductor die spaced apart from the circuit device and mounted on the substrate, a shielding wire spaced apart from the semiconductor die and formed across the semiconductor die, and an auxiliary wire supporting the shielding wire under the shielding wire and formed to be perpendicular to the shielding wire. In another embodiment, a bump structure is used to support the shielding wire. In a further embodiment, an auxiliary wire includes a bump structure portion and wire portion and both the bump structure portion and the wire portion are used to support the shielding wire.
Abstract:
A semiconductor package improves reliability of heat emitting performance by maintaining a heat emitting lid stacked on a top surface of a semiconductor chip at a tightly adhered state. A highly adhesive interface material and a thermal interface material are applied to the top surface of the semiconductor chip. The highly adhesive interface material insures that the heat emitting lid is bonded to the top surface while the thermal interface material insures excellent heat transfer between the top surface and the heat emitting lid.
Abstract:
A semiconductor package and a method of making a semiconductor package. As non-limiting examples, various aspects of this disclosure provide various semiconductor packages, and methods of making thereof, that comprise a conductive layer that comprises an anchor portion extending through at least one dielectric layer.
Abstract:
A method for forming a semiconductor device with an electromagnetic interference shield is disclosed and may include coupling a semiconductor die to a first surface of a substrate, encapsulating the semiconductor die and portions of the substrate using an encapsulant, placing the encapsulated substrate and semiconductor die on an adhesive tape, and forming an electromagnetic interference (EMI) shield layer on the encapsulant, on side surfaces of the substrate, and on portions of the adhesive tape adjacent to the encapsulated substrate and semiconductor die. The adhesive tape may be peeled away from the encapsulated substrate and semiconductor die, thereby leaving portions of the EMI shield layer on the encapsulant and on the side surfaces of the substrate with other portions of the EMI shield layer remaining on portions of the adhesive tape. Contacts may be formed on a second surface of the substrate opposite to the first surface of the substrate.
Abstract:
A semiconductor device includes a shielding wire formed across a semiconductor die and an auxiliary wire supporting the shielding wire, thereby reducing the size of a package while shielding the electromagnetic interference generated from the semiconductor die. In one embodiment, the semiconductor device includes a substrate having at least one circuit device mounted thereon, a semiconductor die spaced apart from the circuit device and mounted on the substrate, a shielding wire spaced apart from the semiconductor die and formed across the semiconductor die, and an auxiliary wire supporting the shielding wire under the shielding wire and formed to be perpendicular to the shielding wire. In another embodiment, a bump structure is used to support the shielding wire. In a further embodiment, an auxiliary wire includes a bump structure portion and wire portion and both the bump structure portion and the wire portion are used to support the shielding wire.
Abstract:
A semiconductor package improves reliability of heat emitting performance by maintaining a heat emitting lid stacked on a top surface of a semiconductor chip at a tightly adhered state. A highly adhesive interface material and a thermal interface material are applied to the top surface of the semiconductor chip. The highly adhesive interface material insures that the heat emitting lid is bonded to the top surface while the thermal interface material insures excellent heat transfer between the top surface and the heat emitting lid.
Abstract:
A semiconductor package and a method of making a semiconductor package. As non-limiting examples, various aspects of this disclosure provide various semiconductor packages, and methods of making thereof, that comprise a conductive layer that comprises an anchor portion extending through at least one dielectric layer.