一种车辆出行量预测模型构建方法及预测方法和系统

    公开(公告)号:CN113380025B

    公开(公告)日:2022-08-30

    申请号:CN202110590338.7

    申请日:2021-05-28

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆出行量预测的模型构建方法及预测方法和系统。所公开方案构建路段出行量OD次数关系图,路段出行量局部关系图、路段出行量全局关系图共同作为空间特征,进行路段车辆出行量预测,并且也考虑外部因素影响,同时采用GCN和TCN混合的深度预测模型进行模型构建与未来出行量的预测。所公开方案提升了车辆出行量预测的准确度,可用于区域内规模车辆出行量的预测。

    一种车辆出行量预测模型构建方法及预测方法和系统

    公开(公告)号:CN111653088B

    公开(公告)日:2022-02-01

    申请号:CN202010317209.6

    申请日:2020-04-21

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆出行量预测模型构建方法及预测方法和系统。所公开的模型构建方法是基于GCN和LSTM设计了深度神经网络Multi‑task GCN‑LSTM用于车辆出行量预测,网络包含三个模块,分别用于提取空间相关性、提取时间相关性和特征融合。所公开的预测方法和系统是基于本发明所构建的模型进行车辆出行量预测。本发明在构建模型时考虑了路段局部关系和路段全局关系,并将车辆到达量预测作为相关任务,使用了多任务学习方法,以避免网络过拟合,并且有效降低了车辆出行量预测误差。

    一种基于注意力机制的城市规模出租车轨迹预测方法

    公开(公告)号:CN110163439A

    公开(公告)日:2019-08-23

    申请号:CN201910438439.5

    申请日:2019-05-24

    Applicant: 长安大学

    Abstract: 一种基于注意力机制的城市规模出租车轨迹预测方法,包括以下步骤:步骤一、采集GPS数据,对GPS数据采集过程中出现的噪声进行数据清理;步骤二、对清洗后的GPS数据进行地图匹配,获取模型所需的实验数据;步骤三、模型训练;在编码器的编码端采用LSTM网络,在解码端将编码向量C作为解码端的LSTM网络,并对编码器隐藏层向量施加注意力机制,每次把上一时刻的预测值作为当前时刻的输入值并送入解码器当中。本发明采用嵌入向量表示城市区域中的路段信息,使用编码器对出租车的轨迹进行编码,通过含有注意力机制的解码器对轨迹进行预测,充分挖掘轨迹序列中的相关性,能有效提升轨迹预测的准确性。

    一种结合深度网络的动态K最近邻地图匹配方法

    公开(公告)号:CN110081890A

    公开(公告)日:2019-08-02

    申请号:CN201910438446.5

    申请日:2019-05-24

    Applicant: 长安大学

    Abstract: 一种结合深度网络的动态K最近邻地图匹配方法,包括:步骤一、采集GPS数据,对GPS数据采集过程中出现的噪声进行数据清洗;步骤二、地图匹配获取实验数据中的距离误差和方向误差;步骤三、对多层感知机的输入数据进行归一化,将归一化的经纬度作为多层感知机模型的输入,训练多层感知机模型获取动态k值;步骤四、每个测试数据根据训练得到的k值与欧几里得距离进行结合,使用k最近邻域算法获得测试数据的预测距离误差和预测方向误差,继而得到相应测试点的投影点;步骤五、根据测试数据的经度、纬度以及预测距离误差和预测方向误差得出测试数据的投影点。本发明能够改善k最近邻算法存在的全局单一k值情况,获取到最佳误差值。

    一种结合深度网络的动态k最近邻地图匹配方法

    公开(公告)号:CN110081890B

    公开(公告)日:2023-02-03

    申请号:CN201910438446.5

    申请日:2019-05-24

    Applicant: 长安大学

    Abstract: 一种结合深度网络的动态k最近邻地图匹配方法,包括:步骤一、采集GPS数据,对GPS数据采集过程中出现的噪声进行数据清洗;步骤二、地图匹配获取实验数据中的距离误差和方向误差;步骤三、对多层感知机的输入数据进行归一化,将归一化的经纬度作为多层感知机模型的输入,训练多层感知机模型获取动态k值;步骤四、每个测试数据根据训练得到的k值与欧几里得距离进行结合,使用k最近邻域算法获得测试数据的预测距离误差和预测方向误差,继而得到相应测试点的投影点;步骤五、根据测试数据的经度、纬度以及预测距离误差和预测方向误差得出测试数据的投影点。本发明能够改善k最近邻算法存在的全局单一k值情况,获取到最佳误差值。

    车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统

    公开(公告)号:CN112037506B

    公开(公告)日:2021-07-09

    申请号:CN202010742540.2

    申请日:2020-07-29

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统。所公开的方案包括采用嵌入向量表示城市区域中的路段信息,分别对车辆的轨迹信息和目的地信息进行编码,以便能够将数目众多的道路信息送入深度神经网络中,然后分别将轨迹信息和目的地信息的嵌入表达送入长短期记忆网络生成包含所有已知轨迹信息的长向量,利用多任务学习中的参数软共享方式将历史轨迹信息与目的地信息进行融合,通过全连接层进行解析与特征提取,进行轨迹预测。本发明采用多任务学习的方式,充分利用了已知轨迹信息与目的地信息,能有效提升轨迹预测的准确性。

    一种车辆OD流预测模型构建方法及车辆OD流预测方法

    公开(公告)号:CN110060471A

    公开(公告)日:2019-07-26

    申请号:CN201910257476.6

    申请日:2019-04-01

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆OD流预测模型构建方法及车辆OD流预测方法。本发明的方法采用网格和路段嵌套的多粒度空间划分方法,用于表示区域和道路节点级别的车辆OD数据,同时提取OD间的出行次数和出行时间,采用CNN和LSTM混合的深度预测模型LSTM_traf_deepCNN,并联合OD出行时间对OD流进行预测。与传统的OD流预测方法相比,本发明的方法充分考虑了行程时间与OD流的隐关系,联合OD间的行程时间和出行次数对深度网络进行训练,所得模型具有更准确的预测能力。本发明属于交通运输信息工程技术领域,可用于城市规模出租车OD流的预测。

    一种基于机器学习算法改进地图匹配异常点的方法

    公开(公告)号:CN108680174B

    公开(公告)日:2019-05-10

    申请号:CN201810443850.7

    申请日:2018-05-10

    Applicant: 长安大学

    Abstract: 一种基于机器学习方法改进地图匹配异常点的方法,获取一辆或多辆出租车匹配后的投影坐标点数据作为样本数据,然后从中筛选出匹配正常与异常的投影点;对于每个匹配异常的投影坐标点,从匹配正确的数据集中筛选出异常点的候选数据集;计算每个异常点与异常点的候选数据集中的投影点之间的时间相似度和空间相似度,得到时空相似度集合,进而根据时间相似度和空间相似度计算时空相似度的均值;比较时空相似度与时空相似度的均值的大小,获取时空相似度大于时空相似度均值的个数,并将满足条件的数据作为最终的候选数据集;在最终的候选数据集中,利用knn算法计算得到改进后的投影坐标点。本发明具有计算量较低,准确率更高的优点。

Patent Agency Ranking