车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统

    公开(公告)号:CN112037506A

    公开(公告)日:2020-12-04

    申请号:CN202010742540.2

    申请日:2020-07-29

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统。所公开的方案包括采用嵌入向量表示城市区域中的路段信息,分别对车辆的轨迹信息和目的地信息进行编码,以便能够将数目众多的道路信息送入深度神经网络中,然后分别将轨迹信息和目的地信息的嵌入表达送入长短期记忆网络生成包含所有已知轨迹信息的长向量,利用多任务学习中的参数软共享方式将历史轨迹信息与目的地信息进行融合,通过全连接层进行解析与特征提取,进行轨迹预测。本发明采用多任务学习的方式,充分利用了已知轨迹信息与目的地信息,能有效提升轨迹预测的准确性。

    一种车辆出行量预测模型构建方法及预测方法和系统

    公开(公告)号:CN111653088A

    公开(公告)日:2020-09-11

    申请号:CN202010317209.6

    申请日:2020-04-21

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆出行量预测模型构建方法及预测方法和系统。所公开的模型构建方法是基于GCN和LSTM设计了深度神经网络Multi-task GCN-LSTM用于车辆出行量预测,网络包含三个模块,分别用于提取空间相关性、提取时间相关性和特征融合。所公开的预测方法和系统是基于本发明所构建的模型进行车辆出行量预测。本发明在构建模型时考虑了路段局部关系和路段全局关系,并将车辆到达量预测作为相关任务,使用了多任务学习方法,以避免网络过拟合,并且有效降低了车辆出行量预测误差。

    车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统

    公开(公告)号:CN112037506B

    公开(公告)日:2021-07-09

    申请号:CN202010742540.2

    申请日:2020-07-29

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆轨迹预测模型构建方法、车辆轨迹预测方法及系统。所公开的方案包括采用嵌入向量表示城市区域中的路段信息,分别对车辆的轨迹信息和目的地信息进行编码,以便能够将数目众多的道路信息送入深度神经网络中,然后分别将轨迹信息和目的地信息的嵌入表达送入长短期记忆网络生成包含所有已知轨迹信息的长向量,利用多任务学习中的参数软共享方式将历史轨迹信息与目的地信息进行融合,通过全连接层进行解析与特征提取,进行轨迹预测。本发明采用多任务学习的方式,充分利用了已知轨迹信息与目的地信息,能有效提升轨迹预测的准确性。

    一种车辆出行量预测模型构建方法及预测方法和系统

    公开(公告)号:CN111653088B

    公开(公告)日:2022-02-01

    申请号:CN202010317209.6

    申请日:2020-04-21

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆出行量预测模型构建方法及预测方法和系统。所公开的模型构建方法是基于GCN和LSTM设计了深度神经网络Multi‑task GCN‑LSTM用于车辆出行量预测,网络包含三个模块,分别用于提取空间相关性、提取时间相关性和特征融合。所公开的预测方法和系统是基于本发明所构建的模型进行车辆出行量预测。本发明在构建模型时考虑了路段局部关系和路段全局关系,并将车辆到达量预测作为相关任务,使用了多任务学习方法,以避免网络过拟合,并且有效降低了车辆出行量预测误差。

    一种基于注意力机制的城市规模出租车轨迹预测方法

    公开(公告)号:CN110163439A

    公开(公告)日:2019-08-23

    申请号:CN201910438439.5

    申请日:2019-05-24

    Applicant: 长安大学

    Abstract: 一种基于注意力机制的城市规模出租车轨迹预测方法,包括以下步骤:步骤一、采集GPS数据,对GPS数据采集过程中出现的噪声进行数据清理;步骤二、对清洗后的GPS数据进行地图匹配,获取模型所需的实验数据;步骤三、模型训练;在编码器的编码端采用LSTM网络,在解码端将编码向量C作为解码端的LSTM网络,并对编码器隐藏层向量施加注意力机制,每次把上一时刻的预测值作为当前时刻的输入值并送入解码器当中。本发明采用嵌入向量表示城市区域中的路段信息,使用编码器对出租车的轨迹进行编码,通过含有注意力机制的解码器对轨迹进行预测,充分挖掘轨迹序列中的相关性,能有效提升轨迹预测的准确性。

Patent Agency Ranking