一种在线式实时短时间交通流预测方法

    公开(公告)号:CN107230349B

    公开(公告)日:2018-06-29

    申请号:CN201710367888.6

    申请日:2017-05-23

    Applicant: 长安大学

    Abstract: 本发明提出了一种在线式实时短时交通流预测方法,对LS‑SVM模型中Lagrange乘子向量的求解过程进行了简化,提出了利用滑动时间窗口的移动来控制新数据样本的加入和旧数据样本的移除,滑动时间窗口中数据样本更新后,仅通过向量的线性运算就可以求得Lagrange乘子向量更新值,从而完成短时交通流预测模型的在线更新。本方法能够有效缩短预测模型在线更新的时间,提高在线短时交通流预测的实时性。

    一种城市出租车乘客出行特征可视化分析方法

    公开(公告)号:CN107577725A

    公开(公告)日:2018-01-12

    申请号:CN201710725052.9

    申请日:2017-08-22

    Applicant: 长安大学

    Abstract: 一种城市出租车乘客出行特征可视化分析方法,包括:步骤一、提取出租车GPS数据并进行数据清洗;获取出租车的上客点和下客点并聚类;步骤二、利用轨迹压缩算法对清洗后的出租车GPS数据进行压缩,提取轨迹特征点;步骤三、进行可视化前的编码映射;步骤四、可视化展示分析:A)聚集可视化:根据获取到的出租车的上客点和下客点聚类结果,利用聚类分布图对数据显示,得到出租车的上客点和下客点分布时空概览图;B)特征可视化:对不同的数据特征采用不同的可视化组件对数据时空模式进行挖掘,并进行出租车的行驶轨迹可视化分析、乘客出行特征可视化分析、乘客出行特征对比分析。本发明为探索乘客出行特征分析提供了一种简单明了的表现形式。

Patent Agency Ranking