-
公开(公告)号:CN115936110B
公开(公告)日:2024-09-03
申请号:CN202211458846.0
申请日:2022-11-18
Applicant: 重庆邮电大学
IPC: G06N3/098 , G06N3/0464 , G06F18/23 , G06F18/2135 , G06F18/214 , G06F18/25 , G06F9/50
Abstract: 本发明涉及一种缓解异构性问题的联邦学习方法,包括初始化所有客户端的任务量和历史训练数据;选取M个客户端作为第一客户端;并根据客户端的资源报告生成客户端的特征向量;将全局模型和第一客户端的任务量发送给第一客户端对全局模型训练获得本地模型;将客户端上传的本地模型进行聚合得到下一轮迭代训练的全局模型;利用全局模型的训练数据对第一客户端进行更新;服务器根据第一客户端向服务器上传的本地模型和利用辅助数据集重新划分下一轮全局模型迭代训练的第一客户端和第二客户端;并重复执行步骤S2‑S6,直至达到预设的训练轮数为止,输出最终全局模型。
-
公开(公告)号:CN115936110A
公开(公告)日:2023-04-07
申请号:CN202211458846.0
申请日:2022-11-18
Applicant: 重庆邮电大学
IPC: G06N3/098 , G06N3/0464 , G06F18/23 , G06F18/2135 , G06F18/214 , G06F18/25 , G06F9/50
Abstract: 本发明涉及一种缓解异构性问题的联邦学习方法,包括初始化所有客户端的任务量和历史训练数据;选取M个客户端作为第一客户端;并根据客户端的资源报告生成客户端的特征向量;将全局模型和第一客户端的任务量发送给第一客户端对全局模型训练获得本地模型;将客户端上传的本地模型进行聚合得到下一轮迭代训练的全局模型;利用全局模型的训练数据对第一客户端进行更新;服务器根据第一客户端向服务器上传的本地模型和利用辅助数据集重新划分下一轮全局模型迭代训练的第一客户端和第二客户端;并重复执行步骤S2‑S6,直至达到预设的训练轮数为止,输出最终全局模型。
-
公开(公告)号:CN114663791A
公开(公告)日:2022-06-24
申请号:CN202210409662.9
申请日:2022-04-19
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种非结构化环境下面向剪枝机器人的枝条识别方法,属于智能农业领域。首先采集自然环境下树枝图像,人工标注树枝类型以及修剪方式,然后图像预处理,再对不同尺寸的图像特征进行编码和注意力加权,将原图的果实和树枝进行分割,使得图像中只剩下树枝。最后对二值化图像进行边缘提取,使用SVM分类器得到树枝的类别和修剪方法。本发明解决了在非结构化环境下传统的目标检测易受复杂背景的影响、还要避免在剪枝的过程中果实遮挡以及树枝重叠的问题,还克服了一般深度学习神经网络模型需要大量训练集、计算量大、计算时间长、对计算机硬件要求高,识别精度不够高等缺点,使用轻量化网络结构,大大减少了模型训练的参数量。
-
-