-
公开(公告)号:CN114663791A
公开(公告)日:2022-06-24
申请号:CN202210409662.9
申请日:2022-04-19
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种非结构化环境下面向剪枝机器人的枝条识别方法,属于智能农业领域。首先采集自然环境下树枝图像,人工标注树枝类型以及修剪方式,然后图像预处理,再对不同尺寸的图像特征进行编码和注意力加权,将原图的果实和树枝进行分割,使得图像中只剩下树枝。最后对二值化图像进行边缘提取,使用SVM分类器得到树枝的类别和修剪方法。本发明解决了在非结构化环境下传统的目标检测易受复杂背景的影响、还要避免在剪枝的过程中果实遮挡以及树枝重叠的问题,还克服了一般深度学习神经网络模型需要大量训练集、计算量大、计算时间长、对计算机硬件要求高,识别精度不够高等缺点,使用轻量化网络结构,大大减少了模型训练的参数量。
-
公开(公告)号:CN117612662A
公开(公告)日:2024-02-27
申请号:CN202311562028.X
申请日:2023-11-22
Applicant: 重庆邮电大学
IPC: G16H10/60 , G16H50/70 , G06F16/31 , G06F16/35 , G06F40/126 , G06F40/279 , G06F40/30
Abstract: 本发明涉及一种ICD自动编码预测方法,包括:获取电子病历,利用ICD自动编码模型,输出相似度评分最高的ICD编码。该ICD自动编码模型的训练过程包括:获取电子病历文本和对应的ICD编码,预处理;构建标签树,创建课程学习任务;转化所述输入词为词向量,得到词向量序列,输入编码器;将编码器输出的特征向量输入解码器进行解码,得到标签的向量表示;将解码器得到的聚合表征输入到分类器中,得到当前层的最终输出表示;将当前层的模型参数传递到下一层进行参数初始化,预测目标更新为当前层标签树上的节点集,重复训练,直到完成在标签树最后一层上的训练为止。本发明的重点在于利用标签的结构信息简化学习任务,同时提高预测准确率。
-