基于元学习的视频行为识别方法
    1.
    发明公开

    公开(公告)号:CN117746296A

    公开(公告)日:2024-03-22

    申请号:CN202311785475.1

    申请日:2023-12-22

    Abstract: 本发明涉及基于元学习的视频行为识别方法,属于计算机视觉技术领域。获取待检测的视频,输入训练后的基于元学习的视频行为识别模型,输出视频行为识别结果。该模型包括内层的域适应行为识别模型和外层的视频行为识别模型;该模型的训练过程分为预热训练和元训练,获取预热训练的样本,对视频行为识别模型进行预热训练,得到元训练集和元测试集,将其输入基于元学习的视频行为识别模型,进行元训练,通过域适应行为识别模型对源域和目标域实现域对齐,通过视频行为识别模型对样本进行视频行为识别,至损失函数收敛停止训练。本发明针对无人机视频的视频行为识别中域适应差的问题,提高模型域适应,进而提升模型的泛化性,识别结果更准确。

    一种基于时空多尺度Transformer的航拍视频分类方法

    公开(公告)号:CN115223082A

    公开(公告)日:2022-10-21

    申请号:CN202210844866.5

    申请日:2022-07-19

    Abstract: 本发明属于遥感影像智能化分析领域,具体涉及一种基于时空多尺度Transformer的航拍视频分类方法,包括:对航拍视频数据进行预处理,输入至训练完成的航拍视频识别模型,通过嵌入特征偏移模块和池化多头自注意力模块的多尺度时空特征提取模块,得到航拍视频图像帧的多尺度短时序时空特征,再通过空洞时间特征提取模块在时间维度上计算空洞自注意力,得到航拍视频的长时序时空特征,从而对航拍视频数据进行准确高效的识别分析。本发明通过充分挖掘航拍视频的多尺度时空信息,能够有效提升航拍视频的分类精度,并且在时间维度上实现自注意力计算的线性复杂度,从而降低了模型的运算复杂度。

Patent Agency Ranking