-
公开(公告)号:CN109765185B
公开(公告)日:2021-03-16
申请号:CN201910060515.3
申请日:2019-01-22
Applicant: 重庆大学 , 北京北分瑞利分析仪器(集团)有限责任公司
Abstract: 一种采用单光声池测量多组分气体的光声光谱检测装置,该装置包括截止阀(1)、颗粒物过滤装置(2)、气体干燥装置(3)、电磁开关阀一(4)、压力传感器(5)、电磁开关阀二(6)、音速喷嘴(7)、真空泵(8)、量子级联激光器阵列模块(9)、分光镜模块(10)、待测参比气室(11)、差分共振光声池(12)、声电转换模块(13)、恒温箱(14)、光功率检测器(15)、消光池(16)、锁相放大电路(17)和工控机(18);所述量子级联激光器阵列模块(9)将多束激光耦合到一束光路中。该装置实现了单光声池同时测量多种故障气体组份。具有抗干扰能力强,设备长期稳定性好,精度高,后期免维护的优点,可实现测量痕量气体至100%浓度气体。
-
公开(公告)号:CN109765181B
公开(公告)日:2021-06-08
申请号:CN201910059839.5
申请日:2019-01-22
Applicant: 重庆大学 , 北京北分瑞利分析仪器(集团)有限责任公司
Abstract: 一种用于气体光声光谱法检测的差分式共振光声池,装置包括待测气室,用于通入所需检测的待测气体;该差分式共振光声池包括:进气口,出气口,待测气室,参比气室,共振光声池,进光窗口,隔离窗口,出光窗口,声电转换模块,前置放大电路及滤波电路。本发明通过差分与共振结构相结合,实现待测气体与声电转换器的有效隔离,提高了设备长期稳定性与抗干扰性,并可实现痕量气体至100%浓度气体的测量,一阶纵向共振结构实现光声信号驻波协同放大,提高气体的检测灵敏度,适合用于电力、核能设备长期在线监测、石油化工原料生产流程监控等应用场合。
-
公开(公告)号:CN120015441A
公开(公告)日:2025-05-16
申请号:CN202510192095.X
申请日:2025-02-21
Applicant: 重庆大学
IPC: H01B19/04
Abstract: 本发明公开了一种提升盆式绝缘子绝缘性能的改性方法及系统。涉及绝缘材料表面改性领域;方法包括:步骤1:将盆式绝缘子表面划分为多个径向等距的环形区域;步骤2:测量改性前的盆式绝缘子表面的电位、表面电导率和表面粗糙度;步骤3:基于改性前的盆式绝缘子表面的电位、表面电导率和表面粗糙度,对环形区域的高压端到接地端依次进行离子束处理,离子束处理通过改变电导率和粗糙度来优化电位分布,对盆式绝缘子表面进行改性;步骤4:对进行离子束处理后的盆式绝缘子进行闪络性能测试,验证改性后盆式绝缘子的闪络性能。本发明通过表面梯度离子束处理,从而形成结构化粗糙度表面,能有效提升盆式绝缘子沿面闪络性能。
-
公开(公告)号:CN119823816A
公开(公告)日:2025-04-15
申请号:CN202510021244.6
申请日:2025-01-06
Applicant: 重庆大学
IPC: C10M169/04 , C10M177/00 , C10N40/16 , C10N20/06 , C10N30/04
Abstract: 本发明提供了一种基于纳米氧化铝的双功能改性环保酯基绝缘油及其制备方法和应用,属于电气绝缘材料技术领域。本发明基于纳米氧化铝的双功能表面改性技术,将纳米氧化铝在PEI溶液中进行第一次表面功能化改性,使用硅烷偶联剂对PEI改性后的纳米氧化铝进行第二次表面功能化改性;将双功能改性的纳米氧化铝颗粒分散于酯基绝缘油中,得到双功能改性环保酯基绝缘油。本发明可通过调整双功能改性纳米氧化铝的配比和含量,结合PEI和硅烷偶联剂的协同作用,可以显著提高环保酯基绝缘油的工频击穿电压、导热系数和降低酸值,填补了现有技术的空白。
-
公开(公告)号:CN115200643B
公开(公告)日:2025-03-21
申请号:CN202210832672.3
申请日:2022-07-14
Applicant: 重庆大学
IPC: G01D21/02
Abstract: 本发明涉及一种基于磁光晶体‑光栅复合结构的光纤磁场‑温度双参数传感器系统,属于光学传感器技术领域,包括磁光晶体‑光栅复合结构传感单元、光路测量系统、磁场‑温度双参数解调系统;窄带激光光源发射出窄带激光,经过消偏器后转变成无偏振态,并经过环形器入射至磁光晶体‑光栅复合结构传感单元的感温光纤光栅进行反射、透射;反射光传递至单路光探;透射光通过准直器传输至偏振片,经过磁光晶体进入偏振分光棱镜分解成两束垂直的线偏光,通过两个准直器传递至平衡双路光探;磁场‑温度双参数解调系统进行采集管理;通过温度‑磁场双参数解调算法获取被测点的温度、磁场信息并进行磁场补偿。
-
公开(公告)号:CN116340713B
公开(公告)日:2025-03-18
申请号:CN202310151275.4
申请日:2023-02-22
Applicant: 重庆大学
IPC: G06F17/16 , G06F30/20 , G06F30/10 , G06F111/10
Abstract: 一种用于数字孪生确定线段所在位置的计算方法及系统,包括:按照四面体单元编号顺序对每个四面体单元的点全局编号;四面体单元内对各点局部编号和六条边局部编号;按照四面体单元编号顺序,排列各点全局编号获得初始矩阵,利用四面体单元编号和边的局部编号对初始矩阵扩展获得扩展矩阵,调整扩展矩阵各行顺序得到搜索矩阵;根据目标线段第一节点局部编号计算目标线段在搜索矩阵中的搜索起始行;根据第一节点全局编号与搜索起始行第一个元素的大小确定搜索方向;根据第一节点全局编号与当前搜索行第一个元素的大小,确定目标线段所在四面体单元编号及边局部编号。本发明大幅减少搜索运算次数,加快线段所在位置的搜索速度。
-
公开(公告)号:CN118579827B
公开(公告)日:2024-12-17
申请号:CN202310194091.6
申请日:2023-03-02
Applicant: 重庆大学
IPC: C01G9/02 , B82Y30/00 , C10M125/10 , C10M169/04 , B01J19/00 , C10N40/16
Abstract: 本发明属于绝缘油添加剂技术领域,本发明提供了一种改性ZnO纳米筛及其制备方法和一种改性合成酯绝缘油及其制备方法。本发明提供的改性ZnO纳米筛的制备包括以下步骤:S1、将锌盐、尿素、碳酸钠和水混合后进行水热反应得到反应产物;S2、反应产物顺次通过离心、洗涤和干燥处理得到ZnO纳米前驱物;S3、对ZnO纳米前驱物进行煅烧处理得到ZnO纳米筛;S4、将ZnO纳米筛、油酸和乙醇混合后得到混合物,混合物顺次通过离心、洗涤和干燥处理得到改性ZnO纳米筛。该改性ZnO纳米筛具有更高的比表面积,将其用于改性合成酯绝缘油可提升合成酯绝缘油的绝缘性能。
-
公开(公告)号:CN118731845A
公开(公告)日:2024-10-01
申请号:CN202410709850.2
申请日:2024-06-03
Applicant: 重庆大学
Abstract: 基于声阵列信号相位差放大的低频声源定位方法及系统,步骤包括:步骤1:采集麦克风阵列的阵元坐标,计算阵元间距系数矩阵;步骤2:通过校正高维Miles模型耦合系数来校正声阵列信号相位差放大系数;步骤3:计算全连接耦合下改进的高维Miles模型的耦合放大矩阵;步骤4:计算耦合放大的低频声阵列接收信号矩阵和耦合放大的低频声阵列接收信号的协方差矩阵;步骤5:计算耦合放大的阵列导向矢量矩阵和去模的阵列导向矢量矩阵;步骤6:基于步骤4计算的耦合放大的低频声阵列接收信号的协方差矩阵和步骤5计算的去模的阵列导向矢量矩阵进行空间谱估计,得到低频声源位置。本发明可提升声阵列信号相位差放大系数一致性,提高低频声源分辨力和定位精度。
-
公开(公告)号:CN114878674B
公开(公告)日:2024-06-28
申请号:CN202210469682.5
申请日:2022-04-28
Applicant: 国电南瑞南京控制系统有限公司 , 重庆大学
Abstract: 本发明涉及一种基于融合算法的绕组应力与漏磁参量综合特征的变压器绕组缺陷诊断方法,属于变压器绕组变形在线监测领域,包括以下步骤:在变压器绕组正常和变形的情况下,测量出测点位置的轴向和辐向磁场数值以及变压器绕组的应力分布;采集故障特征并分类编码;将传感器采集到的数据信息进行分析处理;建立基于L‑M算法的优化BP神经网络的变压器绕组缺陷诊断模型;随机初始化网络参数,通过训练集对网络进行训练和调优,通过测试集对网络进行测试,通过训练好的基于L‑M算法的优化BP神经网络对后续待诊断的变压器进行故障诊断;向基于L‑M算法的优化BP神经网络中输入实测数据,实现变压器绕组缺陷实时性诊断。
-
公开(公告)号:CN117747197A
公开(公告)日:2024-03-22
申请号:CN202311375194.9
申请日:2023-10-23
Applicant: 重庆大学
Abstract: 本发明公开了一种适用于空间环境的超导电缆,包括:由内而外设置为中空的铜支撑管、铜支撑管内部中空的部分为液态工质流通通道、液态工质流通通道被分隔板分为两部分、螺旋堆叠缠绕在铜支撑管上的超导导体、绝缘层、用于正常工况下维持超导导体所需低温环境的铜导冷带、用于反射太阳辐射和保护超导电缆的外壳以及用于连接铜导冷带和外壳的支撑隔板。本发明的有益效果为:能够利用超导电缆,实现空间太阳能电站的零自损大功率电力传输,降低能量损耗,减小空间辐射板面积,节省成本,为未来空间电力输电提供可靠且高效的运行条件。
-
-
-
-
-
-
-
-
-