-
公开(公告)号:CN115128936B
公开(公告)日:2024-05-31
申请号:CN202210617840.7
申请日:2022-06-01
Applicant: 西安空间无线电技术研究所
Abstract: 一种铷原子钟数字伺服的相检和积分装置及方法,包括一个“带符号控制的快速累加器”:实现铷原子钟伺服的相检和积分功能;实现对模数和数模转换过程的量化噪声的抑制。“带符号控制”指的是将光检交流误差信号Sn(k)与参考电压P相乘算法简化为符号控制单元实现相检功能;“快速”指的是采用远高于参考电压P的累加频率fclk;“累加器”指的是用长度为N位的累加器实现积分功能,在低n位对Sn'(k)和DN(k)进行累加并溢出至高位,截取累加值DN(k+1)的高m位作为直流纠偏信号Vm(k+1)。本方法仅使用少量处理器资源,在寄存器发生单粒子翻转效应时,可通过锁频环路实时纠正错误数据,同时通过长周期平均的方法降低错误数据的影响,大幅增强抗空间单粒子翻转能力。
-
公开(公告)号:CN110708060A
公开(公告)日:2020-01-17
申请号:CN201910792587.7
申请日:2019-08-26
Applicant: 西安空间无线电技术研究所
Abstract: 本发明涉及一种优化C场电流降低铷钟温度敏感性的方法,属于原子频标技术领域。该方法包括下列步骤:(1)、通过测试获取C场电流与温度系数的特性曲线;(2)、设置铷钟的C场电流值为该铷钟温度系数出现拐点时对应的C场电流值,并测试此时铷钟整机的温度系数值;(3)、判断步骤(2)所测得的铷钟整机的温度系数值是否满足指标要求,是,则结束温度系数调试过程;否则,调整C场电流值,直到铷钟整机的温度系数值满足指标要求,从而降低铷钟温度敏感性。本发明降低了铷钟的温度敏感性,提升了铷钟的长期稳定度指标。
-
公开(公告)号:CN105573365B
公开(公告)日:2017-11-07
申请号:CN201510945405.7
申请日:2015-12-16
Applicant: 西安空间无线电技术研究所
IPC: G05D23/19
Abstract: 一种星载铷钟的控温电路,本控温电路通过对温度电压信号的精确采样,将采样后的温度电压信号与电压比较电路中实时产生的参考信号进行比较,通过参考电压的实时选择,将上述比较后的信号范围限定在每个量化区域,然后将比较后的信号进行放大(增益大小与选择开关数量一致),放大后的电压信号正好处于A/D采样的全量程电压范围内,然后MCU对A/D数据进行接收、扩展A/D采样位数,MCU每采样一次数据后,MCU需要实时控制电压比较电路,重新选择合适的开关,然后再进行下一次数据采样,同时基于扩展后的数据,MCU应用数字控制算法(PID)通过加热驱动电路实现高精度温度控制。
-
公开(公告)号:CN105573365A
公开(公告)日:2016-05-11
申请号:CN201510945405.7
申请日:2015-12-16
Applicant: 西安空间无线电技术研究所
IPC: G05D23/19
CPC classification number: G05D23/1917
Abstract: 一种星载铷钟的控温电路,本控温电路通过对温度电压信号的精确采样,将采样后的温度电压信号与电压比较电路中实时产生的参考信号进行比较,通过参考电压的实时选择,将上述比较后的信号范围限定在每个量化区域,然后将比较后的信号进行放大(增益大小与选择开关数量一致),放大后的电压信号正好处于A/D采样的全量程电压范围内,然后MCU对A/D数据进行接收、扩展A/D采样位数,MCU每采样一次数据后,MCU需要实时控制电压比较电路,重新选择合适的开关,然后再进行下一次数据采样,同时基于扩展后的数据,MCU应用数字控制算法(PID)通过加热驱动电路实现高精度温度控制。
-
公开(公告)号:CN117394832A
公开(公告)日:2024-01-12
申请号:CN202311383976.7
申请日:2023-10-24
Applicant: 西安空间无线电技术研究所
Abstract: 一种铷钟FSK小调制信号生成系统及方法,属于电子信息技术领域。本发明包括一个2分频器、一个M分频器、一个基于DDS原理的累加器和一个异或门:实现在10MHz时钟源输入条件下,生成的含有5.3125*MHz FSK小调制信号频谱分量的方波信号,且此频谱分量的中心频率5.3125*MHz可微调。通过本软件的应用实现了FSK小调制信号的全数字过程处理,消减了模拟电路、降低了调试难度,并且大幅降低了FPGA的资源占用和时钟速率。2分频器是将10MHz时钟二分频生成一路5MHz;另一路通过10MHz进行M分频的某一频率作为时钟参考,基于DDS原理生成中心频率可微调的0.3125MHz小调制方波信号;将5MHz信号与0.3125MHzFSK小调制信号进行异或数字混频处理,获得含有5.3125*MHz小调制的频谱分量的方波信号。
-
公开(公告)号:CN110708060B
公开(公告)日:2023-04-14
申请号:CN201910792587.7
申请日:2019-08-26
Applicant: 西安空间无线电技术研究所
Abstract: 本发明涉及一种优化C场电流降低铷钟温度敏感性的方法,属于原子频标技术领域。该方法包括下列步骤:(1)、通过测试获取C场电流与温度系数的特性曲线;(2)、设置铷钟的C场电流值为该铷钟温度系数出现拐点时对应的C场电流值,并测试此时铷钟整机的温度系数值;(3)、判断步骤(2)所测得的铷钟整机的温度系数值是否满足指标要求,是,则结束温度系数调试过程;否则,调整C场电流值,直到铷钟整机的温度系数值满足指标要求,从而降低铷钟温度敏感性。本发明降低了铷钟的温度敏感性,提升了铷钟的长期稳定度指标。
-
公开(公告)号:CN111373886B
公开(公告)日:2015-06-10
申请号:CN201318002019.6
申请日:2013-05-10
Applicant: 西安空间无线电技术研究所
IPC: H03L7/26
Abstract: 一种星载铷钟FSK电路,包括FPGA和滤波电路,FPGA包括分频模块、频率累加器、频率寄存器和频率控制字模块;外部时钟信号输入到FPGA内部,为分频模块、频率累加器和频率控制字模块提供时钟,分频模块将输入时钟信号进行分频,生成82Hz的方波信号输出,同时还将该82Hz的方波信号送入频率控制字模块,频率控制字模块根据该82Hz信号的高低电平生成频率控制字并送入频率累加器进行累加操作,频率累加器将每次累加的结果存储到频率寄存器中进行储存,频率寄存器中存储的数据的最高位作为FSK输出信号,经过滤波电路滤波之后输出。本发明在不影响铷钟的技术指标的情况下,简化了电路设计,提高了调试效率,降低了电路成本。
-
公开(公告)号:CN115128936A
公开(公告)日:2022-09-30
申请号:CN202210617840.7
申请日:2022-06-01
Applicant: 西安空间无线电技术研究所
Abstract: 一种铷原子钟数字伺服的相检和积分装置及方法,包括一个“带符号控制的快速累加器”:实现铷原子钟伺服的相检和积分功能;实现对模数和数模转换过程的量化噪声的抑制。“带符号控制”指的是将光检交流误差信号Sn(k)与参考电压P相乘算法简化为符号控制单元实现相检功能;“快速”指的是采用远高于参考电压P的累加频率fclk;“累加器”指的是用长度为N位的累加器实现积分功能,在低n位对Sn'(k)和DN(k)进行累加并溢出至高位,截取累加值DN(k+1)的高m位作为直流纠偏信号Vm(k+1)。本方法仅使用少量处理器资源,在寄存器发生单粒子翻转效应时,可通过锁频环路实时纠正错误数据,同时通过长周期平均的方法降低错误数据的影响,大幅增强抗空间单粒子翻转能力。
-
公开(公告)号:CN111373885B
公开(公告)日:2016-06-22
申请号:CN201318002012.4
申请日:2013-05-10
Applicant: 西安空间无线电技术研究所
IPC: H03L7/26
Abstract: 本发明公开了一种利用阶跃倍频器进行温度系数补偿的铷钟电路结构,利用SRD的温度敏感性进行铷钟温度系数补偿从而降低铷钟整机温度系数,使得由此输出的微波功率也随温度的变化可正可负,由于微波功率频移是正向的,因此微波功率随温度升高而变大的为正温度系数,微波功率随温度升高而变小的为负温度系数,即因此引起的铷钟电路温度系数可正可负,根据已有的物理部分的温度系数的正负和量级,主动调试出与物理部分温度系数相反且量级最接近的阶跃倍频器(SRD)装入铷钟整机,实现铷钟温度系数补偿,降低铷钟整机的温度系数,该方法实现简单,可使铷钟整机的温度系数大幅减小,理论上可使得铷钟整机的温度系数接近于零值。
-
公开(公告)号:CN103326717B
公开(公告)日:2016-02-10
申请号:CN201310173110.3
申请日:2013-05-10
Applicant: 西安空间无线电技术研究所
IPC: H03L7/26
Abstract: 本发明公开了一种铷钟扫描捕获辅助锁定方法,利用现有的铷钟锁定遥测模块、DDS频率综合电路进行判定;当未锁定时,DDS频率综合电路按照一定的周期、频率步进和频率范围,调节输出的FSK信号频率。根据微波频率和FSK信号频率的相关性,微波频率也会随着FSK信号变化而变化。当微波频率进入铷钟锁频环路的捕捉带,则铷钟能进入锁定状态,达到实现扫描捕获辅助锁定功能。这种方法减少了硬件构成,如低频振荡器等;而且不带来任何干扰噪声,同时具有调试简单的特点。
-
-
-
-
-
-
-
-
-