-
公开(公告)号:CN109948527B
公开(公告)日:2022-12-02
申请号:CN201910205485.0
申请日:2019-03-18
Applicant: 西安电子科技大学
IPC: G06V20/52 , G06V10/46 , G06V10/774 , G06V10/764
Abstract: 本发明公开了一种基于集成深度学习的小样本太赫兹图像异物检测方法,主要解决现有方法需要人工设计图像特征,训练过程复杂,且不能对某一类样本数目特别少的小样本赫兹图像进行异物检测的问题。本发明的具体要步骤如下:(1)制作小样本太赫兹图像数据集;(2)扩增图像训练集;(3)搭建集成深度学习网络;(4)训练集成深度学习网络;(5)对图像测试集进行检测。本发明能够自动提取图像特征,训练过程简单,考虑了实际样本中某一类样本数目特别少的小样本情况,能够对小样本太赫兹图像进行异物检测,能提高小样本中数目特别少的一类的检测正确率。
-
公开(公告)号:CN108388901B
公开(公告)日:2020-06-16
申请号:CN201810112593.9
申请日:2018-02-05
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于空间‑语义通道的协同显著目标检测方法。本发明通过模拟人类视觉,根据图像间的协同辅助规则,对待检测的群组图像中彩色图和图像深度图,进行空间协同和语义协同双通道并行处理,利用协同显著性先验获得两种初步协同显著图,融合两个初步协同显著图,得到最终的协同显著图,实现复杂场景群组图像中共同的显著目标的检测,有效地突出了群组图像的共同显著目标并且抑制了复杂的背景噪声,使得本发明具有较好的检测结果,提高了检测的准确率和召回率。
-
公开(公告)号:CN108282427B
公开(公告)日:2019-11-26
申请号:CN201711345202.X
申请日:2017-12-15
Applicant: 西安电子科技大学
IPC: H04L27/00 , H04L1/00 , H04B17/391
Abstract: 本发明公开一种基于多尺度轻量网络的无线电信号认知识别方法,其实现步骤为:(1)生成29种编码调制联合信号和2种调制信号;(2)生成训练样本集和测试样本集;(3)构建多尺度轻量网络模型;(4)设置多尺度轻量网络模型的参数;(5)训练多尺度轻量网络模型;(6)将测试样本集输入到训练好的多尺度轻量网络模型中进行测试,获得识别准确率。本发明具有模型轻量化、普适性强、训练参数少、识别的无线电信号类型多,分类精度高的优点,可用于信号分类识别技术领域中。
-
公开(公告)号:CN108282426B
公开(公告)日:2019-11-26
申请号:CN201711293537.1
申请日:2017-12-08
Applicant: 西安电子科技大学
IPC: H04L27/00 , H04L1/00 , H04B17/391
Abstract: 本发明公开一种基于轻量级深度网络的无线电信号认知识别方法,其实现步骤为:(1)构建编码调制联合信号;(2)生成训练样本集和测试样本集;(3)构建轻量级深度网络;(4)设置轻量级深度网络的参数;(5)训练轻量级深度网络;(6)获得认知识别准确率。本发明具有普适性强,可以直接处理一维无线电信号,不需要人工特征提取和先验知识,能同时认知识别无线电信号的信道编码方式和调制识别方式,复杂度低,模型轻量化,分类结果准确、稳定的优点,可用于无线电信号认知识别技术领域中。
-
公开(公告)号:CN108282263B
公开(公告)日:2019-11-26
申请号:CN201711345300.3
申请日:2017-12-15
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于一维深度残差轻量网络的编码调制联合识别方法,其实现步骤为:(1)生成29种编码调制联合信号和2种调制信号;(2)生成训练样本集和测试样本集;(3)构建一维深度残差轻量网络模型;(4)训练一维深度残差轻量网络模型;(5)将测试样本集输入到训练好的一维深度残差轻量网络模型中进行测试,获得识别准确率,评估网络性能。本发明是一种通用的无线电信号特征提取方法,具有普适性好、鲁棒性强、识别准确率高、网络参数少、识别信号类型多的优点,可用于实际复杂通讯环境下的无线电信号的编码与调制方式的联合识别。
-
公开(公告)号:CN108282427A
公开(公告)日:2018-07-13
申请号:CN201711345202.X
申请日:2017-12-15
Applicant: 西安电子科技大学
IPC: H04L27/00 , H04L1/00 , H04B17/391
Abstract: 本发明公开一种基于多尺度轻量网络的无线电信号认知识别方法,其实现步骤为:(1)生成29种编码调制联合信号和2种调制信号;(2)生成训练样本集和测试样本集;(3)构建多尺度轻量网络模型;(4)设置多尺度轻量网络模型的参数;(5)训练多尺度轻量网络模型;(6)将测试样本集输入到训练好的多尺度轻量网络模型中进行测试,获得识别准确率。本发明具有模型轻量化、普适性强、训练参数少、识别的无线电信号类型多,分类精度高的优点,可用于信号分类识别技术领域中。
-
公开(公告)号:CN108282262A
公开(公告)日:2018-07-13
申请号:CN201711345203.4
申请日:2018-04-16
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于门控循环单元深度网络的智能时序信号分类方法,其实现步骤为:(1)构建编码调制联合时序信号;(2)生成训练样本集和测试样本集;(3)搭建门控循环单元深度网络模型;(4)设置门控循环单元深度网络的参数;(5)训练门控循环单元深度网络模型;(6)获得分类准确率。本发明不需要人工特征提取和大量先验知识,可以对一维信号进行自动的特征提取和准确的信号分类,具有复杂度低,分类结果准确、稳定等优点,可用于军事和民用通信领域中。
-
公开(公告)号:CN107226087A
公开(公告)日:2017-10-03
申请号:CN201710385715.7
申请日:2017-05-26
Applicant: 西安电子科技大学
CPC classification number: B60W30/00 , B60Q9/008 , B60W50/0098 , B60W50/14 , B60W2050/0043 , B60W2050/0075 , B60W2050/143 , B60W2050/146 , B60W2550/10 , B60W2550/22
Abstract: 本发明公开了一种结构化道路自动驾驶运输车及控制方法,本发明的装置通过摄像头读入图像,传递给具有不同作用的神经网络进行计算。将各个神经网络组队分工,实现了自动驾驶、标志理解、危险预警、人机交互等功能,并受到共享单车的启发,创建了一个模型参数共享平台,有助于解决人们在神经网络难以理解的路上行驶自动驾驶车辆训练参数模型费时费力的问题,提高了资源的利用率。
-
公开(公告)号:CN109948527A
公开(公告)日:2019-06-28
申请号:CN201910205485.0
申请日:2019-03-18
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于集成深度学习的小样本太赫兹图像异物检测方法,主要解决现有方法需要人工设计图像特征,训练过程复杂,且不能对某一类样本数目特别少的小样本赫兹图像进行异物检测的问题。本发明的具体要步骤如下:(1)制作小样本太赫兹图像数据集;(2)扩增图像训练集;(3)搭建集成深度学习网络;(4)训练集成深度学习网络;(5)对图像测试集进行检测。本发明能够自动提取图像特征,训练过程简单,考虑了实际样本中某一类样本数目特别少的小样本情况,能够对小样本太赫兹图像进行异物检测,能提高小样本中数目特别少的一类的检测正确率。
-
公开(公告)号:CN107226087B
公开(公告)日:2019-03-26
申请号:CN201710385715.7
申请日:2017-05-26
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种结构化道路自动驾驶运输车及控制方法,本发明的装置通过摄像头读入图像,传递给具有不同作用的神经网络进行计算。将各个神经网络组队分工,实现了自动驾驶、标志理解、危险预警、人机交互等功能,并受到共享单车的启发,创建了一个模型参数共享平台,有助于解决人们在神经网络难以理解的路上行驶自动驾驶车辆训练参数模型费时费力的问题,提高了资源的利用率。
-
-
-
-
-
-
-
-
-