-
公开(公告)号:CN107979554A
公开(公告)日:2018-05-01
申请号:CN201711144077.6
申请日:2017-11-17
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于多尺度卷积神经网络的无线电信号调制识别算法,其实现步骤为:(1)生成处理后的无线电调制信号;(2)生成二维时频图,对信号的瞬时相关函数作傅里叶变换得到信号的维格纳-威利时频分布图;(3)对时频分布图进行预处理,生成训练样本集和测试样本集;(4)构建多尺度卷积神经网络模型并进行训练;(5)使用训练好的网络模型对测试集进行测试,计算正确率,获得识别准确率,评估网络性能。本发明具有普适性强,不需要人工特征提取和大量先验知识,复杂度低,分类结果准确、稳定的优点,可用于信号分类识别技术领域中。
-
公开(公告)号:CN109271926B
公开(公告)日:2021-09-10
申请号:CN201811074578.6
申请日:2018-09-14
Applicant: 西安电子科技大学
Abstract: 本发明是一种基于GRU深度卷积网络的智能辐射源识别方法,主要解决现有技术无法提取到雷达辐射源信号序列化特征的问题,其方案为:对雷达辐射源信号进行分类;仿真雷达辐射源信号,并对雷达辐射源信号进行切片;将切片后的样本转为二维实数样本,对二维实数样本归一化并划分训练样本集与测试样本集;构建基于门控循环单元GRU的深度神经网络;将训练样本集输入深度神经网络中,通过对损失函数的优化,得到训练好的深度神经网络模型;将测试样本集输入到训练好的深度神经网络模型中,得到雷达辐射源信号识别结果。本发明能提取信号前后关联特征,避免人工特征提取和先验知识,复杂度低,分类结果准确,可用于复杂电磁环境下对雷达辐射源识别。
-
公开(公告)号:CN108282262B
公开(公告)日:2019-11-26
申请号:CN201711345203.4
申请日:2018-04-16
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于门控循环单元深度网络的智能时序信号分类方法,其实现步骤为:(1)构建编码调制联合时序信号;(2)生成训练样本集和测试样本集;(3)搭建门控循环单元深度网络模型;(4)设置门控循环单元深度网络的参数;(5)训练门控循环单元深度网络模型;(6)获得分类准确率。本发明不需要人工特征提取和大量先验知识,可以对一维信号进行自动的特征提取和准确的信号分类,具有复杂度低,分类结果准确、稳定等优点,可用于军事和民用通信领域中。
-
公开(公告)号:CN108495132B
公开(公告)日:2019-10-11
申请号:CN201810110020.2
申请日:2018-02-05
Applicant: 西安电子科技大学
IPC: H04N19/122 , H04N19/124 , H04N19/25 , H04N19/48 , G06K9/00 , G06K9/62 , G06N3/04 , H04N7/20
Abstract: 本发明公开了一种基于轻量级深度卷积网络的遥感影像大倍率压缩方法,其步骤为:1.搭建一个7层的轻量级深度卷积网络;2.选取遥感影像训练样本;3.生成训练数据集;4.训练轻量级深度卷积网络;5.压缩待测试遥感影像;6.解压待测试遥感影像的大倍率压缩文件。本方法设计了一种新的7层的轻量级深度卷积网络,该方法的模型轻巧,压缩解压缩时间短,可实现大倍率压缩,优化了反量化过程,提高了神经网络的精度,提升了复原遥感影像的质量,可以保留更多的遥感影像的边缘纹理信息。
-
公开(公告)号:CN107979554B
公开(公告)日:2019-10-08
申请号:CN201711144077.6
申请日:2017-11-17
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于多尺度卷积神经网络的无线电信号调制识别算法,其实现步骤为:(1)生成处理后的无线电调制信号;(2)生成二维时频图,对信号的瞬时相关函数作傅里叶变换得到信号的维格纳‑威利时频分布图;(3)对时频分布图进行预处理,生成训练样本集和测试样本集;(4)构建多尺度卷积神经网络模型并进行训练;(5)使用训练好的网络模型对测试集进行测试,计算正确率,获得识别准确率,评估网络性能。本发明具有普适性强,不需要人工特征提取和大量先验知识,复杂度低,分类结果准确、稳定的优点,可用于信号分类识别技术领域中。
-
公开(公告)号:CN109271926A
公开(公告)日:2019-01-25
申请号:CN201811074578.6
申请日:2018-09-14
Applicant: 西安电子科技大学
Abstract: 本发明是一种基于GRU深度卷积网络的智能辐射源识别方法,主要解决现有技术无法提取到雷达辐射源信号序列化特征的问题,其方案为:对雷达辐射源信号进行分类;仿真雷达辐射源信号,并对雷达辐射源信号进行切片;将切片后的样本转为二维实数样本,对二维实数样本归一化并划分训练样本集与测试样本集;构建基于门控循环单元GRU的深度神经网络;将训练样本集输入深度神经网络中,通过对损失函数的优化,得到训练好的深度神经网络模型;将测试样本集输入到训练好的深度神经网络模型中,得到雷达辐射源信号识别结果。本发明能提取信号前后关联特征,避免人工特征提取和先验知识,复杂度低,分类结果准确,可用于复杂电磁环境下对雷达辐射源识别。
-
公开(公告)号:CN108495132A
公开(公告)日:2018-09-04
申请号:CN201810110020.2
申请日:2018-02-05
Applicant: 西安电子科技大学
IPC: H04N19/122 , H04N19/124 , H04N19/25 , H04N19/48 , G06K9/00 , G06K9/62 , G06N3/04 , H04N7/20
Abstract: 本发明公开了一种基于轻量级深度卷积网络的遥感影像大倍率压缩方法,其步骤为:1.搭建一个7层的轻量级深度卷积网络;2.选取遥感影像训练样本;3.生成训练数据集;4.训练轻量级深度卷积网络;5.压缩待测试遥感影像;6.解压待测试遥感影像的大倍率压缩文件。本方法设计了一种新的7层的轻量级深度卷积网络,该方法的模型轻巧,压缩解压缩时间短,可实现大倍率压缩,优化了反量化过程,提高了神经网络的精度,提升了复原遥感影像的质量,可以保留更多的遥感影像的边缘纹理信息。
-
公开(公告)号:CN108282263A
公开(公告)日:2018-07-13
申请号:CN201711345300.3
申请日:2017-12-15
Applicant: 西安电子科技大学
Abstract: 本发明公开一种基于一维深度残差轻量网络的编码调制联合识别方法,其实现步骤为:(1)生成29种编码调制联合信号和2种调制信号;(2)生成训练样本集和测试样本集;(3)构建一维深度残差轻量网络模型;(4)训练一维深度残差轻量网络模型;(5)将测试样本集输入到训练好的一维深度残差轻量网络模型中进行测试,获得识别准确率,评估网络性能。本发明是一种通用的无线电信号特征提取方法,具有普适性好、鲁棒性强、识别准确率高、网络参数少、识别信号类型多的优点,可用于实际复杂通讯环境下的无线电信号的编码与调制方式的联合识别。
-
公开(公告)号:CN117368853A
公开(公告)日:2024-01-09
申请号:CN202311594783.6
申请日:2023-11-27
Applicant: 中咨泰克交通工程集团有限公司 , 西安电子科技大学
Abstract: 本发明公开了一种轻量型MIMO毫米波雷达系统,属于雷达探测技术领域。该轻量型MIMO毫米波雷达系统包括阵列天线模块、速度距离检测模块和目标位置确定模块,阵列天线模块从阵列天线入手,设计了天线线阵以及各参数,并给出一种长短距离模式下的MIMO天线布阵,可对道路上远距离和近距离目标进行稳定跟踪;同时通过速度距离检测模块采用的针对性的速度与距离检测方法,在多运动目标的情况下实现对目标的高精度探测与稳定跟踪。
-
公开(公告)号:CN108282427B
公开(公告)日:2019-11-26
申请号:CN201711345202.X
申请日:2017-12-15
Applicant: 西安电子科技大学
IPC: H04L27/00 , H04L1/00 , H04B17/391
Abstract: 本发明公开一种基于多尺度轻量网络的无线电信号认知识别方法,其实现步骤为:(1)生成29种编码调制联合信号和2种调制信号;(2)生成训练样本集和测试样本集;(3)构建多尺度轻量网络模型;(4)设置多尺度轻量网络模型的参数;(5)训练多尺度轻量网络模型;(6)将测试样本集输入到训练好的多尺度轻量网络模型中进行测试,获得识别准确率。本发明具有模型轻量化、普适性强、训练参数少、识别的无线电信号类型多,分类精度高的优点,可用于信号分类识别技术领域中。
-
-
-
-
-
-
-
-
-