固支圆板极限荷载安全评估方法

    公开(公告)号:CN108170933B

    公开(公告)日:2021-01-05

    申请号:CN201711414670.8

    申请日:2017-12-22

    Applicant: 苏州大学

    Abstract: 本发明公开了一种固支圆板极限荷载安全评估方法,包括:S1、在π平面上的误差三角形中,通过Tresca轨迹边长与TSS轨迹边长的边心距调和平均构建出一直线轨迹,根据流动法则确定出一边心距调和平均屈服准则;S2、采用变分法结合边心距调和平均屈服准则的比塑性功率构建出固支圆板极限载荷模型;S3、根据固支圆板极限荷载模型计算固支圆板极限荷载值,并与固支圆板的极限压力进行比较,若固支圆板极限荷载值大于固支圆板的极限压力,则判定固支圆板结构安全,否则判定固支圆板结构不安全。本发明能够给出固支圆板极限载荷的连续曲线,普适性较好,易于工程应用,即根据固支圆板尺寸和它的材料性能可以直接研判该结构能否安全服役。

    一种建立特厚板轧制力模型的方法

    公开(公告)号:CN109877168B

    公开(公告)日:2020-12-11

    申请号:CN201910288914.5

    申请日:2019-04-15

    Applicant: 苏州大学

    Abstract: 本发明实施例公开了一种建立特厚板轧制力模型的方法。该建立特厚板轧制力模型的方法包括步骤构造速度场,计算轧制功率并且将其最小化,计算温升,在变形抗力模型中引入温升,在轧制力模型中嵌入温升进而获得轧制力相关参数。本发明实施例在计算过程中引入温升的变形抗力模型,有效地提高轧制力的预测精度,从而能够有效地对轧制生产进行指导。

    钨掺杂钛基复合多孔材料及其制备方法

    公开(公告)号:CN111822721A

    公开(公告)日:2020-10-27

    申请号:CN202010675244.5

    申请日:2020-07-14

    Applicant: 苏州大学

    Abstract: 本发明涉及一种钨掺杂钛基复合多孔材料及其制备方法。本发明公开了W在制备钨掺杂钛基复合多孔材料中的应用,在制备钨掺杂钛基复合多孔材料时,在其中掺杂少量微纳尺寸的W,可提高其致密度、显著提高基体硬度和耐磨性。钨掺杂钛基复合多孔材料中分布有多个三维多孔结构,多个三维多孔结构组成拓扑结构或随机结构,钨掺杂钛基复合多孔材料包括Ti、TiC和W,其中钨金属占钨掺杂钛基复合多孔材料质量分数的3%以下。钨掺杂钛基复合多孔材料通过墨水直写成型增材制造的方法或添加造孔剂结合放电等离子烧结的方法实现。

    多孔钽工件的纤维编织法

    公开(公告)号:CN104741876B

    公开(公告)日:2017-08-25

    申请号:CN201510133594.8

    申请日:2015-03-25

    Applicant: 苏州大学

    Abstract: 本发明公开了一种多孔钽工件的纤维编织法,其包括:S1.建立几何模型,并进行计算;S2.加工形成钽箔条带;S3.纤维编织,形成由钽箔条带编织而成的层状结构;S4.将得到的各层状结构进行堆积;S5.加热加压;S6.烧结,冷却至室温,获得本发明的多孔钽工件。本发明的多孔钽工件的纤维编织法通过优化工艺参数、精确控制钽箔薄条带的尺寸,进行二维纤维编织制备成网状的纤维薄层。并通过层层堆积,加热加压,按照一定的加热烧结成形得到生物多孔钽。本发明的制造方法可以应用于医疗行业,并解决了使用粉末进行层层堆积时的环境污染问题和其他烧结法、气相沉积法带来的有害残留物质的问题。

    一种厚板粗轧阶段轧制力预报方法

    公开(公告)号:CN106623443A

    公开(公告)日:2017-05-10

    申请号:CN201611239146.7

    申请日:2016-12-28

    Applicant: 苏州大学

    CPC classification number: B21B37/58 B21B38/08 B21B2265/12 G06F17/5086

    Abstract: 本发明公开了一种厚板粗轧阶段轧制力预报方法,所述方法包括:S1、在π平面上的误差三角形中,通过Mises准则屈服半径与Tresca轨迹边心距构建一个边心距线性组合屈服准则;S2、根据流动法则计算材料屈服时的比塑性功率;S3、用整体加权平均法确定厚板轧制速度场;S4、利用比塑性功率和轧制速度场求解内部变形功率、摩擦功率、剪切功率以及总功率;S5、基于轧制总功率极值构建厚板粗轧阶段轧制力预测模型,并根据轧制力预测模型预报厚板粗轧阶段轧制力。本发明能够准确预报厚板粗轧阶段轧制力,并能定量指导轧机的强度校核与工艺参数的优化,确保稳定轧出厚板产品。

    多孔钽工件的纤维编织法

    公开(公告)号:CN104741876A

    公开(公告)日:2015-07-01

    申请号:CN201510133594.8

    申请日:2015-03-25

    Applicant: 苏州大学

    Abstract: 本发明公开了一种多孔钽工件的纤维编织法,其包括:S1.建立几何模型,并进行计算;S2.加工形成钽箔条带;S3.纤维编织,形成由钽箔条带编织而成的层状结构;S4.将得到的各层状结构进行堆积;S5.加热加压;S6.烧结,冷却至室温,获得本发明的多孔钽工件。本发明的多孔钽工件的纤维编织法通过优化工艺参数、精确控制钽箔薄条带的尺寸,进行二维纤维编织制备成网状的纤维薄层。并通过层层堆积,加热加压,按照一定的加热烧结成形得到生物多孔钽。本发明的制造方法可以应用于医疗行业,并解决了使用粉末进行层层堆积时的环境污染问题和其他烧结法、气相沉积法带来的有害残留物质的问题。

    热轧纳米强化钢板的焊接方法

    公开(公告)号:CN103753023A

    公开(公告)日:2014-04-30

    申请号:CN201410051694.1

    申请日:2014-02-14

    Applicant: 苏州大学

    Abstract: 本发明公开了一种热轧纳米强化钢板的焊接方法,该焊接方法包括如下步骤:S1.对待焊接的两块热轧纳米强化钢板进行净化处理;S2.将S1中经过净化处理的两块热轧纳米强化钢板置于工作台上,并使两块钢板紧密接触,两块钢板之间的距离小于钢板厚度的10%;S3.在保护气体氛围下,利用激光器发射激光束对焊缝所在的焊接区域进行照射。本发明的焊接方法不使用高强度焊丝,有效地降低了生产成本。通过选择合适激光功率、扫描速度及离焦量,使得热轧纳米强化钢板焊接处的强度和韧性与母材持平,改善了利用传统焊接方法对700MPa级热轧纳米强化钢板焊接后焊接接头位置处出现强度和韧性骤降的问题。

    一种拉拔模具的工艺优化方法

    公开(公告)号:CN109933955B

    公开(公告)日:2023-04-07

    申请号:CN201910307993.X

    申请日:2019-04-18

    Applicant: 苏州大学

    Abstract: 本发明公开了一种拉拔模具的工艺优化方法。本发明实施例所提供的一种拉拔模具的工艺优化方法构建了一种有利于金属流动的曲面拉拔模的模面函数并且基于该曲面拉拔的模面函数获得拉拔力的计算表达式,拉拔模具在应用本发明提供的这种曲面拉拔模时,有效地降低了最大应力及外加拉拔力,从而有利于提升拉拔制品的质量、成材率以及减少了能量消耗。

    一种利用生物质木炭制备碳化铁的方法

    公开(公告)号:CN108675297B

    公开(公告)日:2020-06-12

    申请号:CN201810673351.7

    申请日:2018-06-26

    Applicant: 苏州大学

    Abstract: 本发明公开了一种利用生物质木炭制备碳化铁的方法,将生物质木炭粉、铁矿粉、粘结剂和适量的水混匀后制成生球,干燥得干球,干球和生物质木炭混合,混合物的上层再铺一层生物质木炭,高温进行预还原,再进行渗碳,得到碳化铁球团。本发明的方法所用的生物质木炭来源广泛且价格低廉,制备碳化铁的效率比传统工艺中直接用CO气体来制备碳化铁的效率更高,对于碳化铁的制备具有重要意义。

    弯管爆破压力安全评估方法

    公开(公告)号:CN108225931A

    公开(公告)日:2018-06-29

    申请号:CN201711414781.9

    申请日:2017-12-22

    Applicant: 苏州大学

    Abstract: 本发明公开了一种弯管爆破压力安全评估方法,包括:S1、在π平面上,通过Tresca轨迹边长、Mises轨迹弧长和TSS轨迹边长的算术平均构建出一直线轨迹,依据屈服应力分量特征确定出算术平均剪应力屈服准则;S2、基于硬化型本构模型和弯管应力应变场构建出基于算术平均剪应力屈服准则的弯管爆破压力模型;S3、根据弯管爆破压力模型计算弯管爆破压力值,并与弯管的额定工作压力进行比较,若弯管爆破压力值与弯管的额定工作压力的比值大于1,则判定弯管未爆破失效,否则判定弯管爆破失效。本发明基于算术平均剪应力屈服准则开发出的弯管爆破压力模型,能够基于材料参数与弯管结构参数准确给出爆破压力预测结果,从而科学评估弯管服役是否安全。

Patent Agency Ranking