一种基于深度学习的海面目标检测与识别方法及系统

    公开(公告)号:CN114140680B

    公开(公告)日:2025-04-29

    申请号:CN202111476925.X

    申请日:2021-12-02

    Abstract: 本申请提供了一种基于深度学习的海面目标检测与识别方法及系统,该方法包括:获取多张图片作为原始图像数据并进行边框和类别标注;对原始图像数据进行数据增强,新生成的图片与采集图片作为训练图片;特征提取网络Darknet53中部分卷积处理层修改为Inception模块和ResNet模块,利用修改后的特征提取网络提取训练图片的特征图;将特征图送入多尺度检测网络中,在特征图上生成不同尺度、不同宽高比的预测框拟合图片中的待测目标,多尺度检测网络包括有至少四个检测尺度;采用NMS对预测框进行多余预测框剔除得到待测目标的唯一标识框;对修改后的特征提取网络、多尺度检测网络以及NMS的整个模型进行迭代训练,最终输出整个模型。有效提高对小目标的检测率、减少漏检现象。

    测试基于深度学习的车辆检测模型鲁棒性的方法和装置

    公开(公告)号:CN112766311A

    公开(公告)日:2021-05-07

    申请号:CN202011615690.3

    申请日:2020-12-30

    Abstract: 本发明公开了一种测试基于深度学习的车辆检测模型鲁棒性的方法和装置,获取车辆图片及对应的CAD模型;建立参数化纹理生成网络模型并进行训练,通过深度神经网络对车辆图片进行特征提取,得到第一特征,通过三角网格模型对CAD模型进行特征提取,得到第二特征,将第一特征和第二特征连接起来作为深度卷积生成网络的输入,输出为参数化纹理图片,将参数化纹理图片并进行处理得到合成车辆图片,将合成车辆图片输入车辆分类网络,记录判别结果中被分类为非车辆的图片的参数化纹理图片并进行建模,得到最终的对抗样本图片,将车身粘贴有对抗样本图片的车辆图片输入被测的车辆检测模型,计算出表征车辆检测模型鲁棒性的鲁棒度。

    一种多模态无监督的行人像素级语义标注方法和系统

    公开(公告)号:CN112766061B

    公开(公告)日:2025-05-16

    申请号:CN202011615688.6

    申请日:2020-12-30

    Abstract: 本发明给出了一种多模态无监督的行人像素级语义标注方法和系统,包括对无人的监控场景进行三维重建,获取监控场景的初始点云信息;利用Tof图像采集设备获取监控场景中的第一点云信息,将其与初始点云信息配准后进行集合的差运算,获得第二点云信息,并将第二点云信息在水平面上进行投影,获得人员点云信息集合;对红外图像采集设备获取的场景信息阈值化后的二值化图像进行膨胀和腐蚀,获得连通区域信息集合;分别将人员点云信息集合和连通区域信息集合,利用已经标定的相机之间的位置关系,投影到RGB图像采集设备的图像平面空间中进行集合的交集运算,响应于共同像素超过第一阈值时,获取对应的人体区域集合。该方法和系统充分融合了不同模态摄像机的优点,可以有效提取出场景中的人体像素点。

    一种基于多源数据的广域海洋全景融合方法及系统

    公开(公告)号:CN114155147A

    公开(公告)日:2022-03-08

    申请号:CN202111459752.0

    申请日:2021-12-02

    Abstract: 本申请提供了一种基于多源数据的广域海洋全景融合方法及系统,该方法包括:获取多张图像并提取图像的标定点,计算相机的参数,使用最小生成树法从图像中选取参考图像,以及对剩余图像进行排序;使用直接线性变换算法获得所有图像中具有重叠区域的两张图像之间的变换矩阵,以及获取所有剩余图像与参考图像之间的投影变换关系;使用光束平差法对参数进行优化,获得标定后的相机参数;以及采用改进的图割算法对多张图像进行拼接融合处理,生成海面全景融合图像。使用光速平差法对标定点残差进行协同优化,获得标定后的相机参数,进而约束相机的整体几何结构。改进后的图割算法可以适用于海面的拼接应用场景以实现海面全景图像的融合。

    一种基于多源数据的广域海洋全景融合方法及系统

    公开(公告)号:CN114155147B

    公开(公告)日:2025-04-29

    申请号:CN202111459752.0

    申请日:2021-12-02

    Abstract: 本申请提供了一种基于多源数据的广域海洋全景融合方法及系统,该方法包括:获取多张图像并提取图像的标定点,计算相机的参数,使用最小生成树法从图像中选取参考图像,以及对剩余图像进行排序;使用直接线性变换算法获得所有图像中具有重叠区域的两张图像之间的变换矩阵,以及获取所有剩余图像与参考图像之间的投影变换关系;使用光束平差法对参数进行优化,获得标定后的相机参数;以及采用改进的图割算法对多张图像进行拼接融合处理,生成海面全景融合图像。使用光速平差法对标定点残差进行协同优化,获得标定后的相机参数,进而约束相机的整体几何结构。改进后的图割算法可以适用于海面的拼接应用场景以实现海面全景图像的融合。

    一种基于深度学习的海面目标检测与识别方法及系统

    公开(公告)号:CN114140680A

    公开(公告)日:2022-03-04

    申请号:CN202111476925.X

    申请日:2021-12-02

    Abstract: 本申请提供了一种基于深度学习的海面目标检测与识别方法及系统,该方法包括:获取多张图片作为原始图像数据并进行边框和类别标注;对原始图像数据进行数据增强,新生成的图片与采集图片作为训练图片;特征提取网络Darknet53中部分卷积处理层修改为Inception模块和ResNet模块,利用修改后的特征提取网络提取训练图片的特征图;将特征图送入多尺度检测网络中,在特征图上生成不同尺度、不同宽高比的预测框拟合图片中的待测目标,多尺度检测网络包括有至少四个检测尺度;采用NMS对预测框进行多余预测框剔除得到待测目标的唯一标识框;对修改后的特征提取网络、多尺度检测网络以及NMS的整个模型进行迭代训练,最终输出整个模型。有效提高对小目标的检测率、减少漏检现象。

    一种多模态无监督的行人像素级语义标注方法和系统

    公开(公告)号:CN112766061A

    公开(公告)日:2021-05-07

    申请号:CN202011615688.6

    申请日:2020-12-30

    Abstract: 本发明给出了一种多模态无监督的行人像素级语义标注方法和系统,包括对无人的监控场景进行三维重建,获取监控场景的初始点云信息;利用Tof图像采集设备获取监控场景中的第一点云信息,将其与初始点云信息配准后进行集合的差运算,获得第二点云信息,并将第二点云信息在水平面上进行投影,获得人员点云信息集合;对红外图像采集设备获取的场景信息阈值化后的二值化图像进行膨胀和腐蚀,获得连通区域信息集合;分别将人员点云信息集合和连通区域信息集合,利用已经标定的相机之间的位置关系,投影到RGB图像采集设备的图像平面空间中进行集合的交集运算,响应于共同像素超过第一阈值时,获取对应的人体区域集合。该方法和系统充分融合了不同模态摄像机的优点,可以有效提取出场景中的人体像素点。

    一种基于电场的水中金属探测定位方法和装置

    公开(公告)号:CN112578463A

    公开(公告)日:2021-03-30

    申请号:CN202011530747.X

    申请日:2020-12-22

    Abstract: 本发明公开了一种基于电流的水中金属探测定位方法和装置,通过将直流电加在水域中边缘的两个电极,在水域中间形成一个电场,并设置多个探针测试不同位置的电势;根据已知位置的金属在电场中间不同位置的位置坐标所测试得到的电势对深度学习神经网络模型进行训练,得到训练后的深度学习神经网络模型,其中深度学习神经网络模型采用多层感知机;在水域中设置未知位置的金属,通过探针采集在水域中电场不同位置的实时电势;将实时电势输入训练后的深度学习神经网络模型中,输出未知位置的金属的位置坐标。通过本方法可以准确快速的定位出金属的坐标位置,给出精准的三维空间位置图。

Patent Agency Ranking