-
公开(公告)号:CN111470518B
公开(公告)日:2024-02-20
申请号:CN202010210921.6
申请日:2020-03-24
Applicant: 福州大学化肥催化剂国家工程研究中心
Abstract: 本发明公开了一种合成氨分离系统,包括原料气供应装置、依次连通的氨气合成塔、第一换热器、第二换热器、氨冷凝器组和第一气液分离器,第一气液分离器的排气口与第二换热器的连通,原料气供应装置依次与第一换热器和氨气合成塔连通;系统中还设有串接的吸收塔和解吸塔,第二换热器的冷气出口与吸收塔的进气口连通,解吸塔上方的排气口与第一换热器的热气进口连通;吸收塔上方的排气口与第一换热器冷气进口通过管道连通,解吸塔的下端出口与吸收塔上部的进口通过管道连通。本发明采用二级冷凝氨分离耦合吸收剂吸收—解吸氨分离的工艺,来深度分离氨合成气中的氨气,大幅降低了循环气中的残余氨气浓度,从而提高了氨净值,减小了循环机的循环量,降低了整个合成氨工序的能耗。
-
公开(公告)号:CN112916041B
公开(公告)日:2023-08-04
申请号:CN202110129232.7
申请日:2021-01-29
Applicant: 福州大学化肥催化剂国家工程研究中心
Abstract: 本发明公开了一种油溶性钼基离子液体催化剂及其制备方法和应用,该催化剂为由有机阳离子和无机阴离子组成,其中阳离子为含有长链烷基的季铵、咪唑、吡啶或吡咯阳离子中的一种,阴离子为钼酸根阴离子,长链烷基使其具有良好的油溶性,可高效分散在重质油中,钼酸根阴离子则提供钼源,经原位硫化后形成纳米级的活性MoS2相颗粒,发挥催化加氢作用。本发明还提供了油溶性钼基离子液体催化剂的制备方法,从三级胺和卤代烷烃出发,经季铵化、阴离子交换、酸碱中和等三步反应即可制得催化剂,制备过程简单且无需用到剧毒试剂,总体成本较为低廉。本发明提供的催化剂可用于各种重质油的悬浮床催化加氢裂化,具有转化率高、结焦率低、杂质脱除效果好的特点。
-
公开(公告)号:CN111547740B
公开(公告)日:2022-10-21
申请号:CN202010214782.4
申请日:2020-03-24
Applicant: 福州大学化肥催化剂国家工程研究中心 , 江苏禾友化工有限公司
IPC: C01C1/04
Abstract: 本发明公开了一种合成氨分离工艺,包括以下步骤:S1)对合成氨气体降温后气液分离出液氨;S2)未液化的气体进入吸收塔中溶入吸收剂形成氨溶液排出;S3)脱氨后的气体作为循环气送入合成塔;S4)氨溶液出吸收塔入解吸塔解吸,形成解吸气和再生吸收剂;S5)再生吸收剂出解吸塔入吸收塔,进一步溶解氨气;S6)解吸气出解吸塔后进行气液分离,分离出富含氨的冷凝液和富含氨气的未冷凝气体;S7)冷凝液入解吸塔参与下一循环的解吸,未冷凝气体与步骤S1中的合成氨气体混合后参与气液分离制得液氨。本发明采用二级冷凝氨分离耦合吸收剂吸收—解吸氨分离的工艺,来深度分离氨合成气中的氨气,大幅降低了循环气中的残余氨气浓度,从而提高了氨净值。
-
公开(公告)号:CN113479905B
公开(公告)日:2022-08-05
申请号:CN202110727887.4
申请日:2021-06-29
Applicant: 福州大学化肥催化剂国家工程研究中心
IPC: C01C1/04
Abstract: 本发明公开了一种自除氧合成氨塔及可再生能源合成氨系统,自除氧合成氨塔包括反应器外筒、原料气进入管和产物气出气管,反应器外筒内套装有触媒框和除氧罐,触媒框内装设有催化剂床层;反应器外筒与触媒框间形成环隙气体通道Ⅱ,其一端与产物气出气管连通;催化剂床层内设一中心管,其一端通过除氧罐与原料气进入管连通,另一端封闭置于催化剂床层内部;原料气经除氧罐除氧后由中心管进入触媒框内进行合成氨反应,反应产物自产物气出气管排出。本发明在塔内设置除氧罐实现氧气的脱除,氧气与氢气反应生成水,水被催化剂载体吸附,将水脱附实现反应器的长期稳定运行,且将除氧罐及其管路集成于同一塔体内,整体结构紧凑,更易于实现系统的小型化。
-
公开(公告)号:CN111097410B
公开(公告)日:2021-11-19
申请号:CN201911246502.1
申请日:2019-12-06
Applicant: 福州大学化肥催化剂国家工程研究中心 , 中国石油天然气股份有限公司石油化工研究院 , 北京三聚环保新材料股份有限公司
Abstract: 本发明提供了一种钌系氨合成催化剂及其制备方法与应用;所述钌系氨合成催化剂包括核壳结构Ru‑Ba‑A,所述核壳结构Ru‑Ba‑A包括作为内核的钌纳米粒子及依次包裹于所述内核上的第一外壳和第二外壳,所述第一外壳为钡纳米粒子,所述第二外壳为金属氧化物。本发明提供的钌系氨合成催化剂,通过采用上述核壳结构Ru‑Ba‑A,将内核钌纳米粒子由内到外依次用钡纳米粒子和金属氧化物包围,有效防止催化剂的使用过程中钌纳米粒子发生团聚,避免钌纳米粒子与金属氧化物直接接触,且钡纳米粒子作为电子助剂具有促进作用,可有效提高钌系氨合成催化剂的稳定性和催化活性,特别是在以煤制气合成氨的体系中的稳定性和催化活性。
-
公开(公告)号:CN113526525A
公开(公告)日:2021-10-22
申请号:CN202110729289.0
申请日:2021-06-29
Applicant: 福州大学化肥催化剂国家工程研究中心
Abstract: 本发明公开了一种余热梯级回收的合成氨塔及可再生能源合成氨系统,其中合成氨塔包括反应器外筒及原料气进入管和产物气出气管,反应器外筒内套装有催化剂床,且反应器外筒与催化剂床间形成环隙通道Ⅱ,其一端与产物气出气管连通;催化剂床的中部设置一中心管,其一端与原料气进入管连通,另一端封闭于催化床内部,沿中心管的轴向在其管壁上开设若干气孔;沿催化剂床轴向间隔布置若干穿越催化剂床内部的第一换热管束,每个第一换热管束的一端分别与具有不同输入水压的水管连通,其另一端与蒸汽管组连通。本发明合成氨塔可进行高效的热传递,预热原料气,且副产不同温度等级的蒸汽,通过调控副产蒸汽实现对床层的准确控温,利于氨合成反应的进行,具有节能降耗的优点。
-
公开(公告)号:CN107486193B
公开(公告)日:2020-09-08
申请号:CN201710586019.2
申请日:2017-07-18
Applicant: 福州大学化肥催化剂国家工程研究中心 , 北京三聚环保新材料股份有限公司
IPC: B01J23/10 , B01J23/887 , C10G47/12 , C10G45/08
Abstract: 本发明公开了一种加氢催化剂及其制备方法。该加氢催化剂以稀土元素掺杂的类水滑石经焙烧后的复合氧化物为载体,利用稀土元素合理调控载体表面的酸碱性位点,一则利用这些酸碱性位点,提高了活性成分的分散程度,提高了轻质油收率;二则利用这些酸碱性位点,改变了载体表面的微环境,提供一种利于催化生成汽油的微环境。
-
公开(公告)号:CN108330287B
公开(公告)日:2019-11-08
申请号:CN201810097457.7
申请日:2018-01-31
Applicant: 北京三聚环保新材料股份有限公司 , 福州大学化肥催化剂国家工程研究中心
Abstract: 本发明属于催化剂回收技术领域,具体涉及一种以碱金属钌酸盐的形式回收催化剂废剂中钌的方法。该方法先将活性炭负载钌催化剂废剂中碱金属和碱土金属通过酸洗除掉,避免形成不溶性的碱土金属钌酸盐;然后再往催化剂中加入碱金属化合物进行焙烧,碱金属化合物一方面能够催化活性炭的氧化,明显降低焙烧温度,缩短焙烧时间,另外一方面能够将催化剂废剂中的钌转化为可溶性的碱金属钌酸盐,碱金属钌酸盐可以直接投入到催化剂的生产工艺中,直接实现钌的回收利用。
-
公开(公告)号:CN107200335B
公开(公告)日:2019-09-24
申请号:CN201710325406.0
申请日:2017-05-10
Applicant: 北京三聚环保新材料股份有限公司 , 福州大学化肥催化剂国家工程研究中心
IPC: C01C1/04 , B01J23/652 , B01J37/02 , B01J37/18 , B01J37/08
Abstract: 本发明提供了一种分段等压氨合成工艺,包括如下步骤:1)将合成氨原料气在装填铁基催化剂的第一氨合成塔中进行一级氨合成,所述一级氨合成的合成压力为5‑7MPa,所述合成氨原料气中氢气与氮气的摩尔比为(1.5‑2.5):1;2)从所述第一氨合成塔中出来的混合气进入装填钌基催化剂的第二氨合成塔中进行二级氨合成,所述二级氨合成的合成压力为4‑6MPa。本发明将氨合成过程分成两段,在特定压力、特定种类的催化剂、特定氢氮比的原料气下进行,不但满足了合成氨工艺要求、保证工艺平稳运行,还提高了氨合成塔出口氨净值以及氮气和氢气的利用率;再者,每段均是在较低压力下进行,大大降低了氨合成工艺的能耗。
-
公开(公告)号:CN110203882A
公开(公告)日:2019-09-06
申请号:CN201910538522.X
申请日:2019-06-20
Applicant: 福州大学化肥催化剂国家工程研究中心
Abstract: 本发明属于制氢技术领域,具体涉及一种氨分解装置及系统和制氢方法。本发明提供的氨分解装置,包括壳体,加热区、换热区、反应段、换热盘管,通过将换热盘管螺旋缠绕在反应段外壁,可以对氨气进行充分加热,提高了氨气的加热效率;通过在反应段设置依次连通的第一反应段和第二反应段,可以保证氨气在进入第一反应段后就被分解产生氮氢混合物,提高了氨气的分解效率,第二反应段可以对第一反应段产生的氮氢混合物中残留的氨气进行二次分解,降低了第二反应段氮氢混合物中氨气的残留量,使氨气分解的更加彻底;该装置可以使氨气的转化率达到99.9%以上,氮氢混合物中氨气的残留量小于1000ppm。
-
-
-
-
-
-
-
-
-