一种基于稀疏表示和SVM的光伏发电阵列故障诊断与分类的方法

    公开(公告)号:CN109672406B

    公开(公告)日:2020-07-07

    申请号:CN201811591020.5

    申请日:2018-12-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于稀疏表示和SVM的光伏发电阵列故障诊断与分类的方法,首先采集光伏阵列不同工作状态下多组温照度的电流样本信号;接着对每个电流样本信号进行归一化处理,构造训练样本矩阵;然后实验探索K‑SVD算法学习过完备字典的参数设置,并分别学习正常字典、单组串1个组件短路字典及单组串一个组件开路字典和单组串2个组件短路字典;接着调用OMP算法,用学习的四种字典重构每一类的电流信号,并计算出原电流信号和重构信号的均方根误差,并可以得到多个特征向量;最后设置SVM的参数,由特征向量训练故障分类器以实现光伏阵列的故障诊断和分类。本发明不需要其他的数据特征,且能在不影响光伏发电系统工作的情况下进行故障检测与分类。

    一种基于稀疏表示和SVM的光伏发电阵列故障诊断与分类的方法

    公开(公告)号:CN109672406A

    公开(公告)日:2019-04-23

    申请号:CN201811591020.5

    申请日:2018-12-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于稀疏表示和SVM的光伏发电阵列故障诊断与分类的方法,首先采集光伏阵列不同工作状态下多组温照度的电流样本信号;接着对每个电流样本信号进行归一化处理,构造训练样本矩阵;然后实验探索K-SVD算法学习过完备字典的参数设置,并分别学习正常字典、单组串1个组件短路字典及单组串一个组件开路字典和单组串2个组件短路字典;接着调用OMP算法,用学习的四种字典重构每一类的电流信号,并计算出原电流信号和重构信号的均方根误差,并可以得到多个特征向量;最后设置SVM的参数,由特征向量训练故障分类器以实现光伏阵列的故障诊断和分类。本发明不需要其他的数据特征,且能在不影响光伏发电系统工作的情况下进行故障检测与分类。

    一种基于小波多分辨分析和SVM的光伏发电阵列故障诊断和分类的方法

    公开(公告)号:CN109617526A

    公开(公告)日:2019-04-12

    申请号:CN201811561729.0

    申请日:2018-12-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于小波多分辨分析和SVM的光伏发电阵列故障诊断和分类的方法,首先采集光伏阵列不同工作状态下不同温照度的电流和电压样本信号;接着进行归一化处理得到电流变化率、电压变化率、功率变化率和电导变化率;然后对得到的四个样本信号进行滑动取窗口信号,并进行小波变换的多分辨率分析;计算四个窗口信号第N层分解的高频信号的2范数,进而构成维度为4的特征向量;然后由不同工作状态的多组样本信号得到多个特征值向量,并分为训练数据与测试数据;最后设置支持向量机SVM的参数,从训练数据中训练故障诊断模型,用测试数据检测该模型的分类的准确性。本发明环境适用性强,有较强的创新性,训练的模型能实现较高精度的故障诊断和分类。

    基于K-SVD训练稀疏字典的光伏阵列故障诊断方法

    公开(公告)号:CN108983749B

    公开(公告)日:2021-03-30

    申请号:CN201810750695.3

    申请日:2018-07-10

    Applicant: 福州大学

    Abstract: 本发明涉及基于K‑SVD训练稀疏字典的光伏阵列故障诊断方法。采集多组光伏发电阵列正常,短路和开路电流样本信号,构造训练样本矩阵;对每个样本信号进行归一化处理;调用K‑SVD算法,确定训练样本矩阵的行数N,列数M,稀疏字典的词汇量K,稀疏度L,以及迭代次数n;利用正常样本矩阵,短路样本矩阵和开路样本矩阵分别训练出正常稀疏字典,短路稀疏字典及开路稀疏字典;调用OMP算法,分别利用三种稀疏字典重构检测样本信号,并计算出三种重构信号和检测样本信号的相关系数;根据检测样本信号和稀疏字典重构信号相关系数的大小实现光伏发电阵列故障的诊断与分类。本发明能够为光伏故障诊断提供了研究经验和研究思路。

    基于K-SVD训练稀疏字典的光伏阵列故障诊断方法

    公开(公告)号:CN108983749A

    公开(公告)日:2018-12-11

    申请号:CN201810750695.3

    申请日:2018-07-10

    Applicant: 福州大学

    Abstract: 本发明涉及基于K-SVD训练稀疏字典的光伏阵列故障诊断方法。采集多组光伏发电阵列正常,短路和开路电流样本信号,构造训练样本矩阵;对每个样本信号进行归一化处理;调用K-SVD算法,确定训练样本矩阵的行数N,列数M,稀疏字典的词汇量K,稀疏度L,以及迭代次数n;利用正常样本矩阵,短路样本矩阵和开路样本矩阵分别训练出正常稀疏字典,短路稀疏字典及开路稀疏字典;调用OMP算法,分别利用三种稀疏字典重构检测样本信号,并计算出三种重构信号和检测样本信号的相关系数;根据检测样本信号和稀疏字典重构信号相关系数的大小实现光伏发电阵列故障的诊断与分类。本发明能够为光伏故障诊断提供了研究经验和研究思路。

Patent Agency Ranking