-
公开(公告)号:CN112927222B
公开(公告)日:2022-10-04
申请号:CN202110330963.8
申请日:2021-03-29
Applicant: 福州大学
IPC: G06T7/00 , G06V10/764 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于混合改进Faster R‑CNN实现多种类光伏阵列热斑检测方法。该方法采集光伏阵列多尺度的红外图像数据,剔除异常的图像数据后,进行热斑等光伏缺陷的类别和回归框标注。通过在线数据增强增加样本的数据量,先输入训练热斑阴影类检测模型,接着输入训练光伏面板类检测模型。通过光伏面板类检测模型的面板检测结果,将热斑阴影类模型检测结果中不在检测面板内的目标去除掉,最后输出原图和图像中光伏面板、一类热斑、二类热斑和阴影四类的检测结果。本发明能够准确对光伏阵列的红外热斑进行检测与定位。
-
公开(公告)号:CN109670553B
公开(公告)日:2022-08-12
申请号:CN201811589935.2
申请日:2018-12-25
Applicant: 福州大学
Abstract: 本发明涉及一种基于自适应神经网络的智能光伏阵列故障诊断方法,包括以下步骤:步步骤S1:采集各种工况条件下的光伏电气特性数据,并通过采样滤波处理构成原始故障数据;步骤S2:将原始故障数据进行数据映射运算,得到总体故障特征数据;步骤S3:利用LDA算法对总体故障特征数据进行特征降维压缩至3维,得到新的特征数据;步骤S4:采用K折交叉检验将新的特征数据分成测试集和训练集,并设定隶属度函数个数和隶属度函数种类;步骤S5:生成初始模糊推理系统;步骤S6:构建自适应神经网络模糊推理系统模型;步骤S7:判断光伏阵列系统是否处于故障状态;本发明的技术能有效的对故障中的光伏阵列进行诊断分类,对比其他的机器学习算法,分类精度高结果准确。
-
公开(公告)号:CN110334870B
公开(公告)日:2022-05-31
申请号:CN201910613978.8
申请日:2019-07-09
Applicant: 福州大学
Abstract: 本发明涉及一种基于门控循环单元网络的光伏电站短期功率预测方法。该方法包括:包括以下步骤:步骤S1:根据待预测日的天气类型选取气象参数作为模型输入,不同的天气类型,占主导地位的气象参数不同;步骤S2:对待预测日之前的20天历史数据进行处理,剔除异常值和黑夜的值,然后对历史功率和历史NWP气象参数进行归一化处理,将其作为训练数据集;步骤S3:采用门控循环单元网络对训练数据集进行学习,并用方均根反向传播算法调整网络的参数;步骤S4:将待预测日的NWP气象参数作为模型的输入,得出预测的功率值。本发明方法能够显著提高光伏电站短期功率预测的精度和可靠性。
-
公开(公告)号:CN111259550B
公开(公告)日:2022-05-13
申请号:CN202010051084.7
申请日:2020-01-17
Applicant: 福州大学
IPC: G06F30/20 , H02S50/00 , G06F113/04
Abstract: 本发明涉及一种基于网格搜索和改进NM单纯形算法的光伏模型更新方法,包括以下步骤:步骤S1:获取光伏面板的实际I‑V特性曲线信息;步骤S2:确定光伏组件模型和目标函数;步骤S3:采用网格搜索对光伏模型参数进行全局搜索,获取光伏模型参数搜索起始点,并确定模型参数搜索范围;步骤S4:采用改进的Nelder‑Mead单纯形对步骤S3中的模型参数搜索起始点进行局部搜索,获取全局最优的光伏模型参数向量。步骤S5:根据得到的全局最优的光伏模型参数向量,实时更新光伏阵列的模型,从而便于评估和优化光伏电站的工作状态。本发明提高了光伏模型参数提取的精度和速度,能够实时更新光伏阵列的模型,从而便于评估和优化光伏电站的工作状态。
-
公开(公告)号:CN114331913A
公开(公告)日:2022-04-12
申请号:CN202210011777.2
申请日:2022-01-06
Applicant: 福州大学
Abstract: 本发明提出一种基于残差注意力块的运动模糊图像复原方法,采用的网络包括由粗到细三个尺度,首先对图像进行预处理,然后在第一级尺度的网络上的编码端通过下采样提取模糊图像的主要特征,网络的基本结构由残差注意力块组成,可以更有效的提取出图像特征,再连接上循环模块,用以获取图像的空间信息,每个尺度的循环模块通过上采样方式连接,最后通过解码端上采样得到输出的结果。每个尺度的网络结构相同,通过跨尺度共享权重来减少参数量,来加快网络的训练速度,通过构建的运动模糊图像复原模型有效的恢复出清晰的图像边缘和一些细节的图像纹理信息。提高了运动模糊图像复原的质量。
-
公开(公告)号:CN109002915B
公开(公告)日:2022-03-18
申请号:CN201810769372.9
申请日:2018-07-13
Applicant: 福州大学
IPC: G06Q10/04 , G06Q50/06 , G06V10/762 , G06K9/62 , G06N3/08
Abstract: 本发明涉及一种基于Kmeans‑GRA‑Elman模型的光伏电站短期功率预测方法,包括:采集光伏电站历史每天的发电功率以及气象站上每天对应时间段的气象参数;对数据进行预处理;利用六项统计指标结合改进Kmeans算法对历史日中第一天到待预测日前一天的样本进行聚类,根据轮廓系数确定类别数;计算每个聚类气象特征值的中心点,判断待预测日所属的类别;确定待预测日的相似日和最佳相似日;确定Elman神经网络参数;得到训练模型;将最佳相似日的参数样本组合以及待预测日的气象参数输入训练模型中对待预测日的发电功率进行预测。本发明能够提高光伏电站在不同季节下的不同天气条件短期功率预测的精度和准确度。
-
公开(公告)号:CN113221468A
公开(公告)日:2021-08-06
申请号:CN202110605736.1
申请日:2021-05-31
Applicant: 福州大学
IPC: G06F30/27 , G06K9/62 , G06N20/00 , G06F119/08
Abstract: 本发明涉及基于集成学习的光伏阵列故障诊断方法,包括以下步骤:获取光伏面板的实际I‑V特性曲线信息和环境信息;计算I‑V特性曲线的电气参数、几何特征,并结合光伏阵列单二极管等效模型电路的模型参数和光伏阵列的背板温度、环境辐照度作为故障特征;对特征数据进行零均值标准化处理,并对故障标签进行序号编码;根据集成学习的模型堆叠方法搭建故障诊断模型,以极端随机树、LightGBM、支持向量机和K‑近邻算法作为模型堆叠第一层的算法,极端随机树作为第二层算法,并用网格搜索选择算法的超参数;根据训练好的模型预测光伏阵列的故障类型,评估和优化光伏电站的工作状态。本发明结合不同算法的优点,提升了故障诊断算法的预测精度和稳定性。
-
公开(公告)号:CN112927222A
公开(公告)日:2021-06-08
申请号:CN202110330963.8
申请日:2021-03-29
Applicant: 福州大学
Abstract: 本发明涉及一种基于混合改进Faster R‑CNN实现多种类光伏阵列热斑检测方法。该方法采集光伏阵列多尺度的红外图像数据,剔除异常的图像数据后,进行热斑等光伏缺陷的类别和回归框标注。通过在线数据增强增加样本的数据量,先输入训练热斑阴影类检测模型,接着输入训练光伏面板类检测模型。通过光伏面板类检测模型的面板检测结果,将热斑阴影类模型检测结果中不在检测面板内的目标去除掉,最后输出原图和图像中光伏面板、一类热斑、二类热斑和阴影四类的检测结果。本发明能够准确对光伏阵列的红外热斑进行检测与定位。
-
公开(公告)号:CN112906987A
公开(公告)日:2021-06-04
申请号:CN202110330964.2
申请日:2021-03-29
Applicant: 福州大学
Abstract: 本发明涉及一种基于卷积神经网络和二维气象矩阵的光伏功率预测方法。该方法提出了一种由一维卷积神经网络和二维卷积神经网络构成的混合卷积神经网络模型,以此模型进行光伏发电功率的预测。以待测小时的气象参数为气象特征值通过灰色关联分析算法在电站的历史数据集中寻找待测小时的相似小时数据。然后将这些数据中的多元气象因素转化为二维气象矩阵,便于卷积神经网络深度挖掘气象因素和光伏功率输出的非线性关系。最后,将这些二维气象矩阵作为模型的输入,预测各个小时的发电功率。本发明能够快速准确对光伏电站的发电功率进行预测。
-
公开(公告)号:CN112787591A
公开(公告)日:2021-05-11
申请号:CN202011199284.3
申请日:2020-10-30
Applicant: 福州大学
Abstract: 本发明涉及一种基于微调密集连接卷积神经网络的光伏阵列故障诊断方法,首先,采集实际工况下的电气特性数据以及环境数据,然后利用Simulink搭建模型阵列,模拟实际工况;获取仿真的电气特性数据,其次,通过突变点检测算法,剔除实际和仿真中的异常数据,获取完整的电气波形数据,对其进行采样,压缩特征,拼接为二维特征矩阵。而后,设计密集连接卷积神经网络,使用仿真训练集和Adam优化算法预训练网络,再使用少量的实际工况的训练集微调网络。最后,利用FT‑DenseNet故障诊断网络,对待测工况测试集下的光伏发电阵列进行检测和分类。本发明方法在小样本的情况下,获得具有高精度,鲁棒性强,泛化能力好的分类网络,能够有效提高光伏阵列故障检测和分类的准确性。
-
-
-
-
-
-
-
-
-