-
公开(公告)号:CN114187208B
公开(公告)日:2024-06-28
申请号:CN202111549115.2
申请日:2021-12-17
Applicant: 福州大学
IPC: G06T5/70 , G06T5/20 , G06T7/90 , G06T3/4007
Abstract: 本发明提供了一种基于融合代价和自适应惩罚项系数的半全局立体匹配方法,首先采用指数融合公式将输入图像的Census变换代价值、AD代价值、输入图像的#imgabs0#方向梯度和#imgabs1#方向梯度进行结合,获得融合匹配代价;然后根据像素点所处位置的颜色分量和梯度分量,选择对应的系数进行多路代价聚合;接着在三维视差空间中选择代价值最小的视差值,组成初始视差图;最后经过视差优化处理流程,得到最终的视差图。在Middlebury平台的Cones、Teddy和Tsukuba图像上的实验表明,相比原始半全局立体匹配算法,应用本技术方案可实现所有区域平均误差降低13.3%~34.5%;不连续区域平均误差降低20.3%~36.2%;非遮挡区域平均误差降低13.8%~51%。
-
公开(公告)号:CN114187208A
公开(公告)日:2022-03-15
申请号:CN202111549115.2
申请日:2021-12-17
Applicant: 福州大学
Abstract: 本发明提供了一种基于融合代价和自适应惩罚项系数的半全局立体匹配方法,首先采用指数融合公式将输入图像的Census变换代价值、AD代价值、输入图像的方向梯度和方向梯度进行结合,获得融合匹配代价;然后根据像素点所处位置的颜色分量和梯度分量,选择对应的系数进行多路代价聚合;接着在三维视差空间中选择代价值最小的视差值,组成初始视差图;最后经过视差优化处理流程,得到最终的视差图。在Middlebury平台的Cones、Teddy和Tsukuba图像上的实验表明,相比原始半全局立体匹配算法,应用本技术方案可实现所有区域平均误差降低13.3%~34.5%;不连续区域平均误差降低20.3%~36.2%;非遮挡区域平均误差降低13.8%~51%。
-
公开(公告)号:CN111104913A
公开(公告)日:2020-05-05
申请号:CN201911335327.3
申请日:2019-12-23
Applicant: 福州大学
Abstract: 本发明涉及一种基于结构及相似度的视频提取PPT方法,首先,采集视频的第一帧图像;对帧图像进行颜色空间转换、高斯滤波、膨胀、Canny边缘检测、轮廓检测,找到其中的目标区域;然后,利用多边形拟合、透视变换对目标区域进行处理,将目标区域转化为矩形;相隔2秒在视频中再取新帧,重复上述的操作,获取第二图的PPT目标区域;最后,对两PPT图片进行相似度比较和差异度比较,接着留下第二幅PPT图,重复执行上述操作直至视频结束;对所有保存的图片进行再裁剪和时间序列筛选处理,以PDF文件形式保存。本发明提供一种从视频中简单、快速提取PPT内容图片并且以PDF文件形式保存的方法。
-
公开(公告)号:CN111104913B
公开(公告)日:2023-03-24
申请号:CN201911335327.3
申请日:2019-12-23
Applicant: 福州大学
Abstract: 本发明涉及一种基于结构及相似度的视频提取PPT方法,首先,采集视频的第一帧图像;对帧图像进行颜色空间转换、高斯滤波、膨胀、Canny边缘检测、轮廓检测,找到其中的目标区域;然后,利用多边形拟合、透视变换对目标区域进行处理,将目标区域转化为矩形;相隔2秒在视频中再取新帧,重复上述的操作,获取第二图的PPT目标区域;最后,对两PPT图片进行相似度比较和差异度比较,接着留下第二幅PPT图,重复执行上述操作直至视频结束;对所有保存的图片进行再裁剪和时间序列筛选处理,以PDF文件形式保存。本发明提供一种从视频中简单、快速提取PPT内容图片并且以PDF文件形式保存的方法。
-
-
-