基于微调密集连接卷积神经网络的光伏阵列故障诊断方法

    公开(公告)号:CN112787591B

    公开(公告)日:2022-05-13

    申请号:CN202011199284.3

    申请日:2020-10-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于微调密集连接卷积神经网络的光伏阵列故障诊断方法,首先,采集实际工况下的电气特性数据以及环境数据,然后利用Simulink搭建模型阵列,模拟实际工况;获取仿真的电气特性数据,其次,通过突变点检测算法,剔除实际和仿真中的异常数据,获取完整的电气波形数据,对其进行采样,压缩特征,拼接为二维特征矩阵。而后,设计密集连接卷积神经网络,使用仿真训练集和Adam优化算法预训练网络,再使用少量的实际工况的训练集微调网络。最后,利用FT‑DenseNet故障诊断网络,对待测工况测试集下的光伏发电阵列进行检测和分类。本发明方法在小样本的情况下,获得具有高精度,鲁棒性强,泛化能力好的分类网络,能够有效提高光伏阵列故障检测和分类的准确性。

    基于微调密集连接卷积神经网络的光伏阵列故障诊断方法

    公开(公告)号:CN112787591A

    公开(公告)日:2021-05-11

    申请号:CN202011199284.3

    申请日:2020-10-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于微调密集连接卷积神经网络的光伏阵列故障诊断方法,首先,采集实际工况下的电气特性数据以及环境数据,然后利用Simulink搭建模型阵列,模拟实际工况;获取仿真的电气特性数据,其次,通过突变点检测算法,剔除实际和仿真中的异常数据,获取完整的电气波形数据,对其进行采样,压缩特征,拼接为二维特征矩阵。而后,设计密集连接卷积神经网络,使用仿真训练集和Adam优化算法预训练网络,再使用少量的实际工况的训练集微调网络。最后,利用FT‑DenseNet故障诊断网络,对待测工况测试集下的光伏发电阵列进行检测和分类。本发明方法在小样本的情况下,获得具有高精度,鲁棒性强,泛化能力好的分类网络,能够有效提高光伏阵列故障检测和分类的准确性。

Patent Agency Ranking