重尾噪声环境下的扫描雷达目标轮廓重建方法

    公开(公告)号:CN119001649A

    公开(公告)日:2024-11-22

    申请号:CN202411097005.0

    申请日:2024-08-12

    Abstract: 本发明公开了一种重尾噪声环境下的扫描雷达目标轮廓重建方法,首先建立回波信号模型,为了有效抑制重尾噪声影响,在最小绝对收缩和选择算子中引入最小绝对偏差约束准则建立目标函数;其次,基于协方差拟合准则,分别构造信号和噪声加权矩阵将该问题等价转化,实现最优正则化参数选取,然后,在稀疏模型的基础上引入全变分约束,通过调整全变分约束的权重可以更好地实现角分辨率和目标轮廓恢复的均衡,采用凸优化求解包对凸优化问题进行求解。与现有方法相比,该方法在重尾噪声环境下不仅具有较高的角分辨率,同时具有良好的重建目标轮廓的能力。

    一种基于无超参数全变差均衡约束的图像去噪方法

    公开(公告)号:CN117274099A

    公开(公告)日:2023-12-22

    申请号:CN202311278845.2

    申请日:2023-10-07

    Abstract: 本发明公开了一种基于无超参数全变差均衡约束的图像去噪方法,首先建立基于列化处理的全变差图像去噪模型,接着构建全变差图像去噪代价函数,然后根据协方差拟合准则,导出全变差稀疏约束的最优均衡加权矩阵,并得出一种无超参数平衡全变差图像去噪代价函数,最后通过凸优化工具实现最优迭代求解。本发明的方法通过对无超参数均衡全变差图像去噪代价函数进行求解,在实现均匀去噪,不损失去噪效果的同时,解决了现有全变差去噪方法中正则化参数的最优选择难题。

    一种针对稀疏场景的分裂重建超分辨成像方法

    公开(公告)号:CN116993587A

    公开(公告)日:2023-11-03

    申请号:CN202310946699.X

    申请日:2023-07-31

    Abstract: 本发明公开了一种针对稀疏场景的分裂重建超分辨成像方法,首先通过建立回波模型,表征目标散射与雷达回波数据间的数学关系,然后在距离向对回波进行有效数据检测,并对检测后数据进行分裂,再构建分裂重建模型,最后根据加权最小二乘准则,采用迭代方式进行求解,得到超分辨结果。本发明的方法通过有效数据检测去除噪声和杂波干扰,然后对有效回波进行分裂,并定义分裂重建模型,将高维重建问题分解为多个低维子问题,降低计算复杂度,进而实现快速超分辨成像,相比现有超分辨方法,在不损失分辨效果的同时,大幅降低了计算复杂度,实现了稀疏场景的快速超分辨成像。

Patent Agency Ranking